Determine whether the vectors are linearly dependent or independent (1,2,1),(-1,0,1) and (2,-1,4)
"\\text{Let $c_1$, $c_2$ and $c_3$ be scalars such that}\n\\\\c_1(1,2,1) + c_2(-1,0,1) +c_3(2,-1,4) = 0\n\\\\\\text{which can be represented in matrix form as represented as}\n\\\\\\begin{vmatrix}\n1 & -1 & 2\\\\\n2 & 0 & -1\\\\\n1 & 1 &4\n\\end{vmatrix}\n\\begin{vmatrix}\nc_1\\\\c_2\\\\c_3\n\\end{vmatrix}\n=\\begin{vmatrix}\n0\\\\0\\\\0\n\\end{vmatrix}\n\\\\\\text{Next, we calculate the determinant of the co-efficient matrix}\n\\\\1\\begin{vmatrix}\n0&-1\\\\\n1&4\n\\end{vmatrix}\n+1\\begin{vmatrix}\n2&-1\\\\\n1&4\n\\end{vmatrix}\n+2\\begin{vmatrix}\n2&0\\\\\n1&1\n\\end{vmatrix}\n\\\\=1+9+4=14\n\\\\\\text{Since the determinant is not equal to zero, then the solution exists and}\n\\\\\\text{$c_1=c_2=c_3=0$}\n\\\\\\text{Therefore the vectors are linearly independent}"
Comments
Leave a comment