Determine the dimension and hence the basis for the vector space spanned by the vectors (-1,1,3),(2,3,4),(3,0,-5) and (-2,1,0)
"R_1=-R_1"
"R_2=R_2-R_1"
"R_3=R_3-3R_1"
"R_2=R_2\/5"
"R_1=R_1+2R_2"
"R_3=R_3-10R_2"
"R_3=R_3\/(-2)"
"R_1=R_1+9R_3\/5"
"R_2=R_2-3R_3\/5"
"\\begin{pmatrix}\n 1 & 0 & 0 & 26\/5 \\\\\n 0 & 1 & 0 & -7\/5 \\\\\n 0 & 0 & 1 & 2 \\\\\n\\end{pmatrix}""rank A=3=>" the dimension is 3.
the basis for the vector space is "\\begin{bmatrix}\n -1 \\\\\n 1 \\\\\n3\n\\end{bmatrix}, \\begin{bmatrix}\n 2 \\\\\n 3 \\\\\n4\n\\end{bmatrix},\\begin{bmatrix}\n 3 \\\\\n 0 \\\\\n-5\n\\end{bmatrix}"
Comments
Leave a comment