Orthogonal reduction
F(x,y)=(x,y) "\\begin{bmatrix}\n 7 & 3 \\\\\n 3 & 7\n\\end{bmatrix}" "\\begin{pmatrix}\n x \\\\\n y\n\\end{pmatrix}" ;
"\\begin{vmatrix}\n 7-k & 3 \\\\\n 3 & 7-k\n\\end{vmatrix}" =k2-14"\\cdot" k+40=0;
k1=4, k2=10;
1)k=4
(3 3)"\\cdot\\begin{pmatrix}\n x \\\\\n y\n\\end{pmatrix}" ="\\begin{pmatrix}\n 0 \\\\\n 0\n\\end{pmatrix}"
x+y=0;x=-1,y=1;|(-1 1)}="\\sqrt{2}" ;
v1="\\frac {1} {\\sqrt{2}}\\cdot\\begin{pmatrix}\n -1 \\\\\n 1\n\\end{pmatrix}" ;
2) k=10
(-3 3)"\\cdot\\begin{pmatrix}\n x \\\\\n y\n\\end{pmatrix}" ="\\begin{pmatrix}\n 0 \\\\\n 0\n\\end{pmatrix}"
-x+y=0;
x=1,y=1;
v1="\\frac {1} {\\sqrt{2}}\\cdot\\begin{pmatrix}\n 1 \\\\\n 1\n\\end{pmatrix}" ;
{v1,v2}-new ortogonal basis;
P="\\frac {1} {\\sqrt{2}}\\cdot\\begin{pmatrix}\n 1 &-1 \\\\\n 1 & 1\n\\end{pmatrix}"
We make substitution
"\\begin{pmatrix}\n \\hat{x }\\\\\n \\hat{ y }\n\\end{pmatrix}" =P-1"\\cdot\\begin{pmatrix}\n x \\\\\n y\n\\end{pmatrix}" ="\\frac {1} {\\sqrt{2}}\\cdot\\begin{pmatrix}\n 1 &1 \\\\\n -1 & 1\n\\end{pmatrix}" "\\cdot\\begin{pmatrix}\n x \\\\\n y\n\\end{pmatrix}" "=\\frac {1} {\\sqrt{2}}\\cdot\\begin{pmatrix}\n x+y \\\\\n -x+y\n\\end{pmatrix}" ;
q(x,y)=("\\hat{x} , \\hat{y}" )"\\cdot" "P^{T}\\cdot\\begin{pmatrix}\n 7 &3\\\\\n 3 &7 \n\\end{pmatrix}\\cdot P\\cdot""\\begin{pmatrix}\n \\hat{x }\\\\\n \\hat{ y }\n\\end{pmatrix}"=("\\hat{x} , \\hat{y}" )"\\cdot""\\begin{pmatrix}\n\n 10 & 0 \\\\\n\n 0& 4\n\n\\end{pmatrix}" "\\cdot" "\\begin{pmatrix}\n \\hat{x }\\\\\n \\hat{ y }\n\\end{pmatrix}"=
=10 "\\cdot\\hat{x}^{2}+4\\cdot\\hat{y}^2=200" ;
"{\\hat{x}^{2}\\over \\sqrt{20}^{2}}+{\\hat{y}^{2}\\over \\sqrt{50}^{2}}=1" it is ellipse.
Principal axes are :
L1||e1="\\frac {1} {\\sqrt{2}}\\cdot\\begin{pmatrix}\n 1 \\\\\n 1\n\\end{pmatrix}" ;
L2||e2="\\frac {1} {\\sqrt{2}}\\cdot\\begin{pmatrix}\n -1 \\\\\n 1\n\\end{pmatrix}" ;
Canonical reducrion:
7x^2+6xy+7y^2=7"\\cdot(x^{2}+\\frac {6}{7}\\cdot x\\cdot y+y^{2})="
=7"\\cdot(x+\\frac{3}{7}\\cdot y)^{2}+\\frac{40}{7}\\cdot y^{2}=200" ;
"\\hat{x}=x+\\frac{3}{7}\\cdot y, \\hat{y}=y;"
"7\\cdot \\hat{x}^2+\\frac{40}{7}\\cdot \\hat{y}^{2}=200;"
"{\\hat{x}^2\\over\\sqrt{\\frac {200}{7}}^2}+{\\hat{y}^2\\over\\sqrt{35}^2}=1" - ellipse
Comments
Leave a comment