Solution;
The matrix representation,A,of the equation is;
"A=\\begin{pmatrix}\n 3 & 1&1\\\\\n 1 & 3&-1\\\\\n1&-1&3\n\n\n\\end{pmatrix}"
Find the characteristic equation from,
"|A-\\lambda I|=0"
i.e;
"\\lambda^3-s_1\\lambda^2+s_2\\lambda-s_3=0"
In which ;
"s_1" =Sum of the main diagonal elements.
"s_1=3+3+3=9"
"s_2" = Sum of the minors of the main diagonal elements;
"s_2=\\begin{vmatrix}\n 3 & 1 \\\\\n 1& 3\n\\end{vmatrix}" +"\\begin{vmatrix}\n 3 & 1\\\\\n 1 & 3\n\\end{vmatrix}" +"\\begin{vmatrix}\n 3& -1 \\\\\n -1 & 3\n\\end{vmatrix}"
"s_2=24"
"s_3" =|A|="\\begin{vmatrix}\n 3& 1&1 \\\\\n 1 & 3&-1\\\\\n1&-1&3\n\\end{vmatrix}" =16
The characteristic equation is ;
"\\lambda^3-9\\lambda^2+24\\lambda-16=0"
Solve for the roots of the equation;
If "\\lambda=1"
1-9+24-16=0
Hence ,"\\lambda =1" is a root.
By synthetic Division,other roots are from;
"\\lambda ^2-8\\lambda+16=0"
"(\\lambda-4)(\\lambda-4)=0"
"\\lambda=4,4"
Hence the eigenvalues are;
4,4,1
Find the eigenvectors;
(A-"\\lambda I" )x=0
"[\\begin{pmatrix}\n 3 &1&1\\\\\n 1& 3&-1\\\\\n1&-1&3\n\\end{pmatrix}" -"\\begin{pmatrix}\n \\lambda & 0 \\\\\n 0 & \\lambda&0\\\\\n0&0&\\lambda\n\\end{pmatrix}]x=0"
To have;
"\\begin{bmatrix}\n 3-\\lambda & 1&1 \\\\\n 1 & 3-\\lambda&-1\\\\\n1&-1&3-\\lambda\n\\end{bmatrix}" "\\begin{bmatrix}\n x \\\\\n y\\\\\nz\\\\\n\\end{bmatrix}=0"
Take;
Case (i),if "\\lambda" =4,the equation becomes;
"\\begin{bmatrix}\n -1& 1&1\\\\\n 1 & -1&-1\\\\\n1&-1&-1\n\\end{bmatrix}" "\\begin{bmatrix}\n x \\\\\n y\\\\\nz\\\\\n\\end{bmatrix}=0"
-x+y+z=0
x-y-z=0
x-y-z=0
The equation gives ;
"x_1=\\begin{bmatrix}\n 2\\\\\n 1\\\\\n1\n\\end{bmatrix}"
Case(iii),"\\lambda =1" ,the equation becomes;
"\\begin{bmatrix}\n 2 & 1&1\\\\\n 1 & 2&-1\\\\\n1&-1&2\n\\end{bmatrix}" "\\begin{bmatrix}\n x\\\\\n y\\\\\nz\n\\end{bmatrix}=0"
2x+y+z=0
x+2y-z=0
x-y+2y=0
The equations give;
"x_3=\\begin{bmatrix}\n -1\\\\\n 1\\\\\n1\n\\end{bmatrix}"
To find the third set of eigenvectors,"x_3"
Since;
"x_1x_2^T=0"
"x_2x_3^T=0"
"x_3x_1^T=0"
We know;
"x_1=\\begin{bmatrix}\n 2 \\\\\n 1\\\\\n1\n\\end{bmatrix}" ,"x_3=\\begin{bmatrix}\n -1\\\\\n 1\\\\\n1\n\\end{bmatrix}"
Let ;
"x_2=\\begin{bmatrix}\n a \\\\\n b\\\\\nc\n\\end{bmatrix}"
Hence;
"\\begin{bmatrix}\n 2 & 1&1 \\\\\n -1 & 1&1\n\\end{bmatrix}""\\begin{bmatrix}\n a \\\\\n b\\\\\nc\n\\end{bmatrix}=0"
2a+b+c=0
-a+b+c=0
Hence,
"x_2=\\begin{bmatrix}\n 0\\\\\n -1\\\\\n1\\\\\n\\end{bmatrix}"
The model matrix,M from the eigenvectors is;
"\\begin{pmatrix}\n 2 & 0&-1\\\\\n 1 & -1&1\\\\\n1&1&1\n\\end{pmatrix}"
The normalised model matrix ,N,is as follows;
Length of eigenvectors;
"x_1=\\sqrt{4+1+1}=\\sqrt6"
"x_2=\\sqrt{0+1+1}=\\sqrt2"
"x_3=\\sqrt{1+1+1}=\\sqrt 3"
"N=\\begin{bmatrix}\n \\frac{2}{\\sqrt6}&0&\\frac{-1}{\\sqrt3} \\\\\n \\frac{1}{\\sqrt6} & \\frac{-1}{\\sqrt2}&\\frac{1}{\\sqrt3}\\\\\n\\frac{1}{\\sqrt6}&\\frac{1}{\\sqrt2}&\\frac{1}{\\sqrt3}\n\\end{bmatrix}"
Transponse normalised model matrix ,"N^T" ;
"N^T=\\begin{bmatrix}\n \\frac{2}{\\sqrt6}&\\frac{1}{\\sqrt6}&\\frac{1}{\\sqrt6} \\\\\n 0 & \\frac{-1}{\\sqrt2}&\\frac{1}{\\sqrt2}\\\\\n\\frac{-1}{\\sqrt3}&\\frac{1}{\\sqrt3}&\\frac{1}{\\sqrt3}\n\\end{bmatrix}"
Find the diagonalized matrix,"D=N^TAN"
"D=\\begin{bmatrix}\n 4 & 0&0 \\\\\n 0 & 4&0\\\\\n0&0&1\n\\end{bmatrix}"
Hence D is the matrix of linear transformation of the quadratic form into canonical form.
Thus the linear transformation,X is;
X=Dy
X="\\begin{pmatrix}\n 4& 0&0 \\\\\n 0 & 4&0\\\\\n0&0&1\n\\end{pmatrix}" "(y_1,y_2,y_3)"
Comments
Leave a comment