We need to find vectors:
"e_1'=(x_1,y_1,z_1) \\newline\ne_2'=(x_2,y_2,z_2) \\newline\ne_3'=(x_3,y_3,z_3) \\newline"
The condition equals three systems of three equations. Each system will give us one vector for the dual base.
First vector:
"x_1+z_1=1 \\newline x_1+y_1=0\\newline\ny_1+z_1=0 \\newline"
Solving these equations we get:
"x_1=\\frac{1}{2}; y_1=\\frac{-1}{2};z_1=\\frac{1}{2} \\newline\ne'_1=(\\frac{1}{2},\\frac{-1}{2},\\frac{1}{2})"
Second vector:
"x_2+z_2=0 \\newline x_2+y_2=1\\newline\ny_2+z_2=0 \\newline" Solving these equations we get:
"x_2=\\frac{1}{2}; y_2=\\frac{1}{2};z_2=\\frac{-1}{2} \\newline\ne'_2=(\\frac{1}{2},\\frac{1}{2},\\frac{-1}{2})" Third vector:
"x_3+z_3=0 \\newline x_3+y_3=0\\newline\ny_3+z_3=1 \\newline" Solving these equations we get:
"x_3=\\frac{-1}{2}; y_3=\\frac{1}{2};z_3=\\frac{1}{2} \\newline\ne'_3=(\\frac{-1}{2},\\frac{1}{2},\\frac{1}{2})" Hence, dual basis are:
"e'_1=(\\frac{1}{2},\\frac{-1}{2},\\frac{1}{2}) \\newline\n\ne'_2=(\\frac{1}{2},\\frac{1}{2},\\frac{-1}{2}) \\newline\n\ne'_3=(\\frac{-1}{2},\\frac{1}{2},\\frac{1}{2})"
Comments
Leave a comment