Find the eigen value and eigen vector of A = [ 3 3 1 5 ]
"\\det(A-\\lambda I)=\\begin{vmatrix}\n 3-\\lambda & 3 \\\\\n 1 & 5-\\lambda\n\\end{vmatrix}=0"
"( 3-\\lambda)( 5-\\lambda)-3(1)=0"
"15-8\\lambda+\\lambda^2-3=0"
"\\lambda^2-8\\lambda+12=0"
"(\\lambda-2)(\\lambda-6)=0"
The eigenvalues are "\\lambda_1=2, \\lambda_2=6."
"\\lambda=2"
"R_2=R_2-R_1"
Solve
If we take "x_2=t," then "x_1=-3t."
The eigenvector is "\\vec x=\\begin{bmatrix}\n -3 \\\\\n 1\n\\end{bmatrix}"
"\\lambda=6"
"R_1=-R_1\/3"
"R_2=R_2-R_1"
Solve
If we take "y_2=t," then "y_1=t."
The eigenvector is "\\vec y=\\begin{bmatrix}\n 1 \\\\\n 1\n\\end{bmatrix}"
Eigenvalue: "2," eigenvector: "\\begin{bmatrix}\n -3 \\\\\n 1\n\\end{bmatrix}."
Eigenvalue: "6," eigenvector: "\\begin{bmatrix}\n 1 \\\\\n 1\n\\end{bmatrix}."
Comments
Leave a comment