"\\begin{gathered}\n\\Delta=\\left|\\begin{array}{ccc}\nx & 0 & 2 x \\\\\n-3 x & 4 x & 6 x \\\\\n-x & -2 x & 3 x\n\\end{array}\\right|=x\\left(12 x^{2}+12 x^{2}\\right)-0+2 x\\left(6 x^{2}+4 x^{2}\\right) \\\\\n=24 x^{3}+20 x^{3}=44 x^{3} \\\\\n\\Delta_{1}=\\left|\\begin{array}{ccc}\n6 & 0 & 2 x \\\\\n30 & 4 x & 6 x \\\\\n8 & -2 x & 3 x\n\\end{array}\\right|=6\\left(12 x^{2}+12 x^{2}\\right)-0+2 x(-60 x-32 x) \\\\\n=144 x^{2}-184 x=4 x(36 x-46) \n\\\\\\Delta_{2}=\\left|\\begin{array}{ccc}\nx & 6 & 2 x \\\\\n-3 x & 30 & 6 x \\\\\n-x & 8 & 3 x\n\\end{array}\\right| \\\\\n=x(90 x-48 x)-6\\left(-9 x^{2}+6 x^{2}\\right)+2 x(-24 x+30 x) \\\\\n=42 x+18 x^{2}+12 x^{2}=42 x+30 x^{2}=2 x(21+15 x) \\\\\n\\Delta_{3}=\\left|\\begin{array}{ccc}\nx & 0 & 6 \\\\\n-3 x & 4 x & 30 \\\\\n-x & -2 x & 8\n\\end{array}\\right|=x(32 x+60 x)-0+6\\left(6 x^{2}+4 x^{2}\\right) \\\\\n=92 x^{2}+60 x^{2}=152 x^{2}\n\\end{gathered}"
"Now, a=\\frac{\\Delta_{1}}{\\Delta}=\\frac{4 x(36 x-46)}{44 x^{3}}=\\frac{(36 x-46)}{11 x^{2}},\\\\b=\\frac{\\Delta_{2}}{\\Delta}=\\frac{2 x(21+15 x)}{44 x^{3}}=\n\n\\frac{(21+15 x)}{22 x^{2}},\\\\ c=\\frac{\\Delta_{3}}{\\Delta}=\\frac{152 x^{2}}{44 x^{3}}=\\frac{38}{11 x}"
Comments
Leave a comment