Given a transformation T:R^2→R^2 defined as T(x_1,x_2 )=(0,x_1-x_2). Find ker(T) and R(T), range of T
"\\begin{bmatrix}\n 0 & 0 \\\\\n 1 & -1\n\\end{bmatrix}\\to\\begin{bmatrix}\n 1 & -1 \\\\\n 0 & 0\n\\end{bmatrix}"
"x_1=x_2"
"\\ker(T)=\\{(x_1, x_2)\\in\\R^2|x_1=x_2\\}"
Hence "\\{(1,1)\\}" is a basis of "\\ker(T)."
The set "\\{(1,0)\\}" forms a basis for the range of "T, R(T)."
Rank theorem
"1+1=2"
Comments
Leave a comment