A system of linear equations has the augmented matrix
"\\left(\\begin{array}{cccc}1&1&k&:&1\\\\-1&1&2k&:&-3\\\\k&1&1&: &k+1\\end{array}\\right)"
where k
k is a constant. What is the value of k such that the system above has no solution?
Solution:
For no solution, "\\det \\begin{pmatrix}1&1&k\\\\ \\:-1&1&2k\\\\ \\:k&1&1\\end{pmatrix}=0"
"\\Rightarrow 0=1\\cdot \\det \\begin{pmatrix}1&2k\\\\ 1&1\\end{pmatrix}-1\\cdot \\det \\begin{pmatrix}-1&2k\\\\ k&1\\end{pmatrix}+k\\det \\begin{pmatrix}-1&1\\\\ k&1\\end{pmatrix}"
"\\Rightarrow 0=1\\cdot \\left(1-2k\\right)-1\\cdot \\left(-1-2k^2\\right)+k\\left(-1-k\\right)\n\\\\\\Rightarrow 0=k^2-3k+2\n\\\\\\Rightarrow k^2-2k-k+2=0\n\\\\\\Rightarrow (k-2)(k-1)=0\n\\\\\\Rightarrow k=2,k=1"
Thus, option 4 is correct.
Comments
Leave a comment