Find the standard matrix A for the linearly transformation T :R^2_R^2
Find the standard matrix of "T:\\R^2\\to \\R^2" rotates points (about the origin) through "\u2212\u03c0\/4" radians (clockwise).
Let "T:\\R^2\\to \\R^2" be a linear transformation given by rotating vectors in the counter-clockwise direction through an angle of "\u03b8."
Then the matrix "A" of "T" is given by
"T\\bigg(\\begin{pmatrix}\n 0 \\\\\n 1\n\\end{pmatrix}\\bigg)=\\begin{pmatrix}\n - \\sin \\theta \\\\\n\\cos \\theta\n\\end{pmatrix}"
"A=\\begin{pmatrix}\n \\cos \\theta & - \\sin\\theta \\\\\n \\sin \\theta & \\cos \\theta\n\\end{pmatrix}"
Given "\\theta=\\pi\/4." Then
Comments
Leave a comment