A curve
y ax bx c
2
where a, b and c are constants, passes
through the points (2,11), (-1,-16) and (3,28).
(a) By using the above information, construct a system
containing three linear equations.
(b) Express the above system as a matrix equation
AX B.
(c) Find the inverse of matrix A by using the adjoint matrix
method. Hence, obtain the values of a, b and c.
(a)
"a(-1)^2+b(-1)+c=-16"
Construct a system containing three linear equations.
(b)
"\\begin{pmatrix}\n 4 & 2 & 1 \\\\\n 1 & -1 & 1 \\\\\n 9 & 3 & 1 \\\\\n\\end{pmatrix}\\begin{pmatrix}\n a \\\\\n b \\\\\n c\n\\end{pmatrix}=\\begin{pmatrix}\n11\\\\\n -16 \\\\\n 28\n\\end{pmatrix}"
(c)
"A^{-1}AX=A^{-1}B"
"X=A^{-1}B"
"\\det A=\\begin{vmatrix}\n 4 & 2 & 1 \\\\\n 1 & -1 & 1 \\\\\n 9 & 3 & 1 \\\\\n\\end{vmatrix}=4\\begin{vmatrix}\n -1 & 1 \\\\\n 3 & 1\n\\end{vmatrix}-2\\begin{vmatrix}\n 1 & 1 \\\\\n 9 & 1\n\\end{vmatrix}+1\\begin{vmatrix}\n 1 & -1 \\\\\n 9 & 3\n\\end{vmatrix}"
"=4(-1-3)-2(1-9)+(3+9)"
"=-16+16+12=12\\not=0=>A^{-1}\\ exists"
Find the cofactor matrix:
"C_{12}=(-1)^{1+2}\\begin{vmatrix}\n 1 & 1 \\\\\n 9 & 1\n\\end{vmatrix}=8"
"C_{13}=(-1)^{1+3}\\begin{vmatrix}\n 1 & -1 \\\\\n 9 & 3\n\\end{vmatrix}=12"
"C_{21}=(-1)^{2+1}\\begin{vmatrix}\n 2 & 1 \\\\\n 3 & 1\n\\end{vmatrix}=1"
"C_{22}(-1)^{2+2}\\begin{vmatrix}\n 4 & 1 \\\\\n 9 & 1\n\\end{vmatrix}=-5"
"C_{23}=(-1)^{2+3}\\begin{vmatrix}\n 4 & 2 \\\\\n 9 & 3\n\\end{vmatrix}=6"
"C_{31}=(-1)^{3+1}\\begin{vmatrix}\n 2 & 1 \\\\\n -1 & 1\n\\end{vmatrix}=3"
"C_{32}=(-1)^{3+2}\\begin{vmatrix}\n 4 & 1 \\\\\n 1 & 1\n\\end{vmatrix}=-3"
"C_{33}=(-1)^{3+3}\\begin{vmatrix}\n 4 & 2 \\\\\n 1 & -1\n\\end{vmatrix}=-6"
The cofactor matrix is
The transpose of the cofactor matrix is
"A^{-1}=\\dfrac{1}{12}\\begin{pmatrix}\n -4 & 1 & 3\\\\\n 8 & -5 & -3 \\\\\n 12 & 6 & -6 \\\\\n\\end{pmatrix}"
"A^{-1}=\\begin{pmatrix}\n -1\/3 & 1\/12 & 1\/4\\\\\n 2\/3 & -5\/12 & -1\/4 \\\\\n 1 & 1 \/2& -1\/2 \\\\\n\\end{pmatrix}"
"\\begin{pmatrix}\n a \\\\\n b \\\\\n c\n\\end{pmatrix}=\\begin{pmatrix}\n -1\/3 & 1\/12 & 1\/4\\\\\n 2\/3 & -5\/12 & -1\/4 \\\\\n 1 & 1 \/2& -1\/2 \\\\\n\\end{pmatrix}\\begin{pmatrix}\n11\\\\\n -16 \\\\\n 28\n\\end{pmatrix}"
"=\\begin{pmatrix}\n-11\/3-4\/3+7\\\\\n22\/3+20\/3-7 \\\\\n 11-8-14\n\\end{pmatrix}=\\begin{pmatrix}\n2\\\\\n7 \\\\\n -11\n\\end{pmatrix}"
"a=2, b=7, c=-11"
"y=2x^2+7x-11"
Comments
Leave a comment