Using matrix method, solve the simultaneous equations
{x-3y=3
5x-9y=11
"A^{-1}AX=A^{-1}B"
"X=A^{-1}B"
"A=\\begin{pmatrix}\n 1 & -3 \\\\\n 5 & -9\n\\end{pmatrix}, X=\\begin{pmatrix}\n x \\\\\n y\n\\end{pmatrix},B=\\begin{pmatrix}\n 3 \\\\\n 11\n\\end{pmatrix}"
"\\begin{pmatrix}\n 1 & -3 \\\\\n 5 & -9\n\\end{pmatrix}\\begin{pmatrix}\n x \\\\\n y\n\\end{pmatrix}=\\begin{pmatrix}\n 3 \\\\\n 11\n\\end{pmatrix}"
"\\det A=\\begin{vmatrix}\n 1 & -3 \\\\\n 5 & -9\n\\end{vmatrix}=1(-9)-(-3)(5)=6\\not=0"
"A^{-1}=\\dfrac{1}{6}\\begin{pmatrix}\n -9 & 3 \\\\\n -5 & 1\n\\end{pmatrix}=\\begin{pmatrix}\n -3\/2 & 1\/2 \\\\\n -5\/6 & 1\/6\n\\end{pmatrix}"
"\\begin{pmatrix}\n -3\/2 & 1\/2 \\\\\n -5\/6 & 1\/6\n\\end{pmatrix}\\begin{pmatrix}\n 3\\\\\n 11\n\\end{pmatrix}=\\begin{pmatrix}\n -9\/2+11\/2 \\\\\n -15\/6+11\/6\n\\end{pmatrix}"
"=\\begin{pmatrix}\n 1 \\\\\n -2\/3\n\\end{pmatrix}"
"x=1, y=-\\dfrac{2}{3}"
"(1, -\\dfrac{2}{3})"
Comments
Leave a comment