let A be a 7*5 matrix with rank(A)=2 complete dim(row space of A) , dim( column space of A) ,dim (null space of A) and (null space of A^t)
dim(row space of A)
"dim (rowspace(A)) = rank(A) = dim (colspace(A))\\\\\ndim (rowspace(A))+dim(null (A))=7\\\\\ndim (rowspace(A))=7-dim(col (A))\\\\\ndim (rowspace(A))=7-4=3\\\\"
dim( column space of A)
"[A]_{5*7}" gives us a transformation T with domain v of dimension T
"dim(col (A))+dim(null (A))=7\\\\\ndim(col (A))=7-dim(col (A))\\\\\ndim(col (A))=7-4=3\\\\"
dim (null space of A)
"dim(null (A))+dim(col (A))=7\\\\\ndim(null (A))=7-dim(col (A))\\\\\ndim(null (A))=7-5=2\\\\"
(null space of At)
"(null space of A^t)= (null space of A)=2"
Comments
Leave a comment