"\\begin{matrix}\n x_a+3x_b+x_c=4 \\\\\n\\\\\n 2x_a+2x_b+x_c=-1 \\\\ \\\\\n 2x_a+3x_b+x_c=3 \\\\\n\\end{matrix}"
The augmented matrix is
"A=\\begin{pmatrix}\n 1 & 3 & 1 & & 4 \\\\\n 2 & 2 & 1 & & -1 \\\\\n 2 & 3 & 1 & & 3 \\\\\n\\end{pmatrix}" "R_2=R_2-2R_1"
"\\begin{pmatrix}\n 1 & 3 & 1 & & 4 \\\\\n 0 & -4 & -1 & & -9 \\\\\n 2 & 3 & 1 & & 3 \\\\\n\\end{pmatrix}" "R_3=R_3-2R_1"
"\\begin{pmatrix}\n 1 & 3 & 1 & & 4 \\\\\n 0 & -4 & -1 & & -9 \\\\\n 0 & -3 & -1 & & -5 \\\\\n\\end{pmatrix}" "R_2=R_2\/(-4)"
"\\begin{pmatrix}\n 1 & 3 & 1 & & 4 \\\\\n 0 & 1 & 1\/4 & & 9\/4 \\\\\n 0 & -3 & -1 & & -5 \\\\\n\\end{pmatrix}" "R_1=R_1-3R_2"
"\\begin{pmatrix}\n 1 & 0 & 1\/4 & & -11\/4 \\\\\n 0 & 1 & 1\/4 & & 9\/4 \\\\\n 0 & -3 & -1 & & -5 \\\\\n\\end{pmatrix}" "R_3=R_3+3R_2"
"\\begin{pmatrix}\n 1 & 0 & 1\/4 & & -11\/4 \\\\\n 0 & 1 & 1\/4 & & 9\/4 \\\\\n 0 & 0 & -1\/4 & & 7\/4 \\\\\n\\end{pmatrix}" "R_3=-4R_3"
"\\begin{pmatrix}\n 1 & 0 & 1\/4 & & -11\/4 \\\\\n 0 & 1 & 1\/4 & & 9\/4 \\\\\n 0 & 0 & 1 & & -7\\\\\n\\end{pmatrix}" "R_1=R_1-R_3\/4"
"\\begin{pmatrix}\n 1 & 0 & 0 & & -1 \\\\\n 0 & 1 & 1\/4 & & 9\/4 \\\\\n 0 & 0 & 1 & & -7\\\\\n\\end{pmatrix}" "R_2=R_2-R_3\/4"
"\\begin{pmatrix}\n 1 & 0 & 0 & & -1 \\\\\n 0 & 1 & 0 & & 4 \\\\\n 0 & 0 & 1 & & -7\\\\\n\\end{pmatrix}"
Then "x_a=-1, x_b=4, x_c=-7."
The solution is "(-1, 4, -7)."
Comments
Leave a comment