Let be a linear transformation. Let and be zero vectors of and. Show that
"Let \\ T: \\mathbb{R}^{n} \\rightarrow \\mathbb{R}^{m} \\\\" be a linear transformation.
"Let \\ \\mathbf{0}_{n} \\ and \\ \\mathbf{0}_{m} \\ be \\ zero \\ vectors \\ of \\ \\mathbb{R}^{n} \\ and \\ \\mathbb{R}^{m} , respectively. \\\\Show \\ that \\ T\\left(\\mathbf{0}_{n}\\right)=\\mathbf{0}_{m}."
"Observe \\ that \\ we \\ have\\ 0 \\cdot \\mathbf{0}_{n}=\\mathbf{0}_{n} .\\\\ (This \\ is \\ a \\ scalar \\ multiplication \\ of \\ the \\ scalar \\ 0 and \\ the \\ vector \\ \\mathbf{0}_{n} \\\\\nNow \\ we \\ have\\ \nT\\left(\\mathbf{0}_{n}\\right)=T\\left(0 \\cdot \\mathbf{0}_{n}\\right)=0 \\cdot T\\left(\\mathbf{0}_{n}\\right)=\\mathbf{0}_{m}\\\\\n \nHere \\ we \\ used \\ the \\ one\\ of\\ the \\ properties \\ of \\ the\\ linear\\ transformation \\ T \\ \\\\ in \\ the\\ second \\ equality. \\\\\nNote \\ that \\ \\mathbf{0}_{n}=\\mathbf{0}_{n}-\\mathbf{0}_{n} \\\\\nThus \\ we \\ have \\\\\n \nT\\left(\\mathbf{0}_{n}\\right)=T\\left(\\mathbf{0}_{n}-\\mathbf{0}_{n}\\right)=T\\left(\\mathbf{0}_{n}\\right)-T\\left(\\mathbf{0}_{n}\\right)=\\mathbf{0}_{m}\\\\\n \nwhere \\ we \\ used \\ the \\ linearity \\ of \\ T \\ in \\ the \\ second \\ equality.\\\\\nIn \\ the \\ last \\ equality, \\ note \\ that \\ the \\ vector \\ T\\left(\\mathbf{0}_{n}\\right) \\ is \\ m -dimensional \\ vector."
Comments
Leave a comment