T : R
3 → R
2
defined by : 9
T(x, y, z) = (x -y + z, -2x + 2y -2 z)
1. Let "u=(u_1, u_2, u_3)" and "v=(v_1, v_2, v_3)" be vectors in "R^3" and "c" and "d" be scalars.
Consider
"T(cu+dv)=T(cu_1+dv_1, cu_2+dv_2, cu_3+dv_3)""=(cu_1+dv_1-(cu_2+dv_2)+cu_3+dv_3,"
"-2(cu_1+dv_1)+2(cu_2+dv_2)-2(cu_3+dv_3))"
"=(c(u_1-u_2+u_3)+d(v_1-v_2+v_3),"
"c(-2u_1+2u_2-2u_3)+d(-2v_1+2v_2-2v_3))"
"+d(v_1-v_2+v_3, -2v_1+2v_2-2v_3)"
"=cT(u)+dT(v)"
Therefore the transformation "T:R^3\\to R^2," given by
"T(x, y, z)=(x-y+z, -2x+2y-2z)"is linear.
2.
"=(1-0+0, -2+0-0)=(1, -2)"
"=(0-1+0, -0+2-0)=(-1, 2)"
"=(0-0+1, -0+0-2)=(1, -2)"
So
3.
"T(0,0,0)=(0,0)"
Comments
Leave a comment