Determine all eigenvalues and the corresponding eigenspaces for the matrix š“ = [ ā9 4 4 ā8 3 4 ā16 8 7 ]
"\\det(A-\\lambda I)=\\begin{vmatrix}\n -9-\\lambda & 4 & 4 \\\\\n -8& 3-\\lambda & 4 \\\\\n -16 & 8 & 7-\\lambda \\\\\n\\end{vmatrix}""=(-9-\\lambda)\\begin{vmatrix}\n 3-\\lambda & 4 \\\\\n 8 & 7-\\lambda\n\\end{vmatrix}-4\\begin{vmatrix}\n -8 & 4 \\\\\n -16 & 7-\\lambda\n\\end{vmatrix}"
"+4\\begin{vmatrix}\n -8 & 3-\\lambda \\\\\n -16 & 8\n\\end{vmatrix}=(-9-\\lambda)(21-10\\lambda+\\lambda^2-32)"
"-4(-56+8\\lambda+64)+4(-64+48-16\\lambda)"
"=99+11\\lambda+90\\lambda+10\\lambda^2-9\\lambda^2-\\lambda^3"
"-32-32\\lambda-64-64\\lambda"
"=-\\lambda^3+\\lambda^2+5\\lambda+3=0"
"-\\lambda^2(\\lambda+1)+2\\lambda(\\lambda+1)+3(\\lambda+1)=0"
"-(\\lambda+1)(\\lambda^2-2\\lambda-3)=0"
"-(\\lambda+1)^2(\\lambda-3)=0"
"\\lambda_1=-1, \\lambda_2=-1, \\lambda_3=3"
These are the eigenvalues: "-1, -1, 3."
"\\lambda=-1"
"A-\\lambda I=\\begin{pmatrix}\n -9+1 & 4 & 4 \\\\\n -8& 3+1 & 4 \\\\\n -16 & 8 & 7+1 \\\\\n\\end{pmatrix}""=\\begin{pmatrix}\n -8 & 4 & 4 \\\\\n -8 & 4 & 4 \\\\\n -16 & 8 & 8 \\\\\n\\end{pmatrix}"
"R_2=R_2-R_1"
"\\begin{pmatrix}\n -8 & 4 & 4 \\\\\n 0 & 0 & 0 \\\\\n -16 & 8 & 8 \\\\\n\\end{pmatrix}""R_3=R_3-2R_1"
"\\begin{pmatrix}\n -8 & 4 & 4 \\\\\n 0 & 0 & 0 \\\\\n 0 & 0 &0 \\\\\n\\end{pmatrix}""R_1=R_1\/(-8)"
"\\begin{pmatrix}\n 1 & -1\/2 & -1\/2 \\\\\n 0 & 0 & 0 \\\\\n 0 & 0 &0 \\\\\n\\end{pmatrix}""\\begin{pmatrix}\n 1 & -1\/2 & -1\/2 \\\\\n 0 & 0 & 0 \\\\\n 0 & 0 &0 \\\\\n\\end{pmatrix}\\begin{pmatrix}\n x_1 \\\\\nx_2 \\\\\nx_3 \\\\\n\\end{pmatrix}=\\begin{pmatrix}\n0 \\\\\n0 \\\\\n0 \\\\\n\\end{pmatrix}"
If we takeĀ "x_2=t, x_3=s," then "x_1=\\dfrac{1}{2}t+\\dfrac{1}{2}s"
Thus
The eigenvectors are
"\\lambda=3"
"A-\\lambda I=\\begin{pmatrix}\n -9-3 & 4 & 4 \\\\\n -8& 3-3 & 4 \\\\\n -16 & 8 & 7-3 \\\\\n\\end{pmatrix}""=\\begin{pmatrix}\n -12 & 4 & 4 \\\\\n -8 & 0 & 4 \\\\\n -16 & 8 & 4 \\\\\n\\end{pmatrix}"
"R_2=R_2-2R_1\/3"
"\\begin{pmatrix}\n -12 & 4 & 4 \\\\\n 0 & -8\/3 & 4\/3 \\\\\n -16 & 8 & 4 \\\\\n\\end{pmatrix}""R_3=R_3-4R_1\/3"
"\\begin{pmatrix}\n -12 & 4 & 4 \\\\\n 0 & -8\/3 & 4\/3 \\\\\n 0 & 8\/3 & -4\/3 \\\\\n\\end{pmatrix}""R_3=R_3+R_2"
"\\begin{pmatrix}\n -12 & 4 & 4 \\\\\n 0 & -8\/3 & 4\/3 \\\\\n 0 & 0 & 0 \\\\\n\\end{pmatrix}""R_2=-3R_2\/8"
"\\begin{pmatrix}\n -12 & 4 & 4 \\\\\n 0 & 1 & -1\/2 \\\\\n 0 & 0 & 0 \\\\\n\\end{pmatrix}""R_1=-R_1\/12"
"\\begin{pmatrix}\n 1 &-1\/3 & -1\/3 \\\\\n 0 & 1 & -1\/2 \\\\\n 0 & 0 & 0 \\\\\n\\end{pmatrix}""R_1=R_1+R_2\/3"
"\\begin{pmatrix}\n 1 &0 & -1\/2 \\\\\n 0 & 1 & -1\/2 \\\\\n 0 & 0 & 0 \\\\\n\\end{pmatrix}""\\begin{pmatrix}\n 1 &0 & -1\/2 \\\\\n 0 & 1 & -1\/2 \\\\\n 0 & 0 & 0 \\\\\n\\end{pmatrix}\\begin{pmatrix}\n x_1 \\\\\nx_2 \\\\\nx_3 \\\\\n\\end{pmatrix}=\\begin{pmatrix}\n0 \\\\\n0 \\\\\n0 \\\\\n\\end{pmatrix}"If we takeĀ "x_3=t," then "x_1=\\dfrac{1}{2}t, x_2=\\dfrac{1}{2}t"
Thus
The eigenvector is
Eigenvalue:Ā ā1, multiplicity:Ā 2, eigenvectors:Ā "\\begin{pmatrix}\n1\/2 \\\\\n1 \\\\\n0 \\\\\n\\end{pmatrix},\\begin{pmatrix}\n1\/2 \\\\\n0 \\\\\n1 \\\\\n\\end{pmatrix}"
Eigenvalue:Ā 3, multiplicity:Ā 1, eigenvector:Ā "\\begin{pmatrix}\n1\/2 \\\\\n1\/2 \\\\\n1 \\\\\n\\end{pmatrix}"
Comments
Leave a comment