2. Use Cayley-Hamilton theorem to find A6 − 5A5 + 8A4 − 2A3 − 9A2 + 31A − 36I,
when A=
1 0 3
2 1 −1
1 −1 1
Find the characteristic polynomial of the matrix A:
"p_A(\\lambda)=\\det\\begin{vmatrix}\n1-\\lambda & 0 & 3\\\\\n2 & 1-\\lambda & -1\\\\\n1 & -1 & 1-\\lambda\n\\end{vmatrix}=(1-\\lambda)^3-6-4(1-\\lambda)"
"-p_A(\\lambda)=\\lambda^3-3\\lambda^2-\\lambda+9"
Cayley-Hamilton theorem claims that "p_A(A)=0", that is, "A^3-3A^2-A+9I=0".
Let's divide "A^6 \u2212 5A^5 + 8A^4 \u2212 2A^3 \u2212 9A^2 + 31A \u2212 36I" by "A^3-3A^2-A+9I" with remainder. We obtain:
"A^6 \u2212 5A^5 + 8A^4 \u2212 2A^3 \u2212 9A^2 + 31A \u2212 36I="
"=(A^3-3A^2-A+9I)(A^3 \u2212 2^2 + 3A \u2212 4I)=0"
Answer. 0.
Comments
Leave a comment