(i) T1 : R3 -> R2 by T1 (u, v, w) = ( u - v + 2w, 5v - w).
(ii) T2 : P (R) -> R by T2 (P) = (integral sign from b to a) 2p(x)dx for a,b E R with a<= b
(iii) T3 : P(R) -> P(R) by T3 (P(U) = UP (U) + U
"\\begin{pmatrix}\n x_2\\\\\n x_2\\\\2x_4+x_5\\\\x_4\\\\x_5\n\\end{pmatrix}=x_2\\begin{pmatrix}\n 1\\\\1\n \\\\0\\\\0\n\\end{pmatrix}+x_4\\begin{pmatrix}\n 0\\\\0\n \\\\2\\\\1\\\\0\n\\end{pmatrix}+x_5\\begin{pmatrix}\n 0\\\\0\\\\1\\\\0\\\\1\n\\end{pmatrix}"
Matrix "S=\\begin{pmatrix}\n 1& 0&0\\\\\n 1&0&0\\\\0&2&1\\\\0&1&0\\\\0&0&1\n\\end{pmatrix}"
rref of"S=\\begin{pmatrix}\n 1&0&0 \\\\\n 0&1&0\\\\0&0&1\\\\0&0&0\\\\0&0&0\n\\end{pmatrix}"
The three vectors are linearly independent and they are the basis of S
Dimension of S=3
PART 2
"\\begin{pmatrix}\n x+y\\\\x-y\\\\\n x+2z\n\\end{pmatrix}=x\\begin{pmatrix}\n 1\\\\\n 1\\\\1\\\\\n\\end{pmatrix}+y\\begin{pmatrix}\n1\\\\-1\\\\0\\\\\n\\end{pmatrix}+z\\begin{pmatrix}\n 0 \\\\0\n \\\\2\n\\end{pmatrix}"
Matrix "T=\\begin{pmatrix}\n 1&1&0\\\\\n 1&-1&0\\\\1&0&2\n\\end{pmatrix}"
rref of "T=\\begin{pmatrix}\n 1&0&0\\\\\n 0&1&0\\\\0&0&1\n\\end{pmatrix}"
The vectors are linearly independent.
The basis of the range "T" is
"[\\begin{pmatrix}\n 1\\\\\n 1\\\\1\n\\end{pmatrix}\\>,\\>\\begin{pmatrix}\n 1 \\\\-1\n \\\\0\n\\end{pmatrix}\\>,\\>\\begin{pmatrix}\n 0 \\\\0\\\\\n 2\n\\end{pmatrix}]"
3, Part1
Every linear transformation is associated with a matrix
"\\begin{pmatrix}\n u-v+2w\\\\\n 5v-w\n\\end{pmatrix}=u\\begin{pmatrix}\n 1 \\\\\n 0\n\\end{pmatrix}+v\\begin{pmatrix}\n -1\\\\\n 5\n\\end{pmatrix}+w\\begin{pmatrix}\n 2\\\\\n -1\n\\end{pmatrix}"
"T_1=\\begin{pmatrix}\n 1&-1&2\\\\\n 0&5&-1\n\\end{pmatrix}"
"\\implies" T1 is linear
3) Part2
"\\int_a^bk2p(x)\\>dx=k\\int_a^b2p(x)\\>dx"
"\\int_a^b2p(x_1+x_2)\\>dx"
"=\\int_a^b2p(x_1)\\>dx + \\int_a^b2p(x_2)\\>dx"
Therefore T2 is linear
3). Part 3
"T_3P(u_1+u_2)=(u_1+u_2)P(u_1+u_2)+(u_1+u_2)"
"T_3P(u_1)=u_1P(u_1)+u_1"
"T_3P(u_2)=u_2P(u_2)+u_2"
"\\therefore \\>T_3P(u_1+u_2) \\mathrlap{\\,\/}{=}T_3P(u_1)"
"+T_3P(u_2)"
Therefore T3 is not linear
Comments
Leave a comment