determine whether the set s={(a,b,c) ; ab=1} is a subspace of R3
If "\\begin{pmatrix}\n 0 \\\\\n 0\\\\\n0\n\\end{pmatrix}" "\\in\\>V" then given "ab=1," then "(0)(0)\\neq1"
"\\therefore \\begin{pmatrix}\n 0 \\\\\n 0\\\\0\n\\end{pmatrix}" is not V "\\implies" V is empty
2). Let "x,y\\in" V then
"x=\\begin{pmatrix}\n x_1 \\\\\n x_2 \\\\\nx_3\n\\end{pmatrix}" and "y=\\begin{pmatrix}\n y_1 \\\\\n y_2 \\\\\ny_3\n\\end{pmatrix}" "x_iy_i\\in\\R"
"x_1x_2=1" and "y_1y_2=1"
"x_2=\\frac{1}{x_{1}}" "y_2=\\frac{1}{y_1}"
"x+y= \\begin{pmatrix}\n x_1+y_1 \\\\\n x_2+y_2 \\\\\nx_3+y_3\n\\end{pmatrix}"
"(x_2+y_2)(x_1+y_1)=1\\implies(x_2+y_2)=\\frac{1}{x_1+y_1}"
"x_2+y_2=\\frac{1}{x_1}+\\frac{1}{y_1}\\neq\\frac{1}{x_1+y_1}"
S is not closed under addition
3) Take "x\\in" V and "\\alpha\\in\\R" then
"x=\\begin{pmatrix}\n x_1 \\\\\n x_2\\\\ \nx_3\n\\end{pmatrix}" for "x_i \\in\\R"
"(x_1)(x_2)=1\\implies\\alpha\\begin{Bmatrix}\n (x_1)(x_2) \n \n\\end{Bmatrix}=\\alpha(1)"
"\\alpha\\>x=\\begin{pmatrix}\n \\alpha\\>x_1 \\\\\n \\alpha\\>x_2\\\\\n\\alpha\\>x_3\n\\end{pmatrix}"
"\\therefore(\\alpha\\>x_2)(\\alpha\\>x_1)=\\alpha^2(x_1)(x_2)\\ne\\alpha(x_1)(x_2)"
S is not closed under scalar multiplication
S is not a subspace of "\\R^3"
Comments
Leave a comment