Given the linear transformation below:
T (x1, x2, x3) → (x1-x2+2x3, 2x1-2x3, -x1-x2+4x3, 3x1-x2)
T = R3 → R4
1. Determine the transformation matrix of the linear transformation above
2. Determine Ker(T) and Range(T)
1.
"Ax=\\begin{pmatrix}\n 1 & -1&2 \\\\\n 2&0 & -2\\\\\n-1&-1&4\\\\\n3&-1&0\n\\end{pmatrix}\\begin{pmatrix}\n x_1 \\\\\n x_2 \\\\\nx_3\\\\\n\n\\end{pmatrix}=\\begin{pmatrix}\n x_1-x_2+2x_3 \\\\\n 2x_1-2x_3 \\\\\n-x_1-x_2+4x_3\\\\\n3x_1-x_2\n\\end{pmatrix}"
transformation matrix:
"A=\\begin{pmatrix}\n 1 & -1&2 \\\\\n 2&0 & -2\\\\\n-1&-1&4\\\\\n3&-1&0\n\\end{pmatrix}"
2.
kernel:
"x_1-x_2+2x_3=0"
"2x_1-2x_3=0"
"-x_1-x_2+4x_3=0"
"3x_1-x_2=0"
"x_1=x_3,x_2=3x_1"
"ker\\ T=span(1,3,1)"
range:
"range\\ T=\\begin{pmatrix}\n x_1-x_2+2x_3 \\\\\n 2x_1-2x_3 \\\\\n-x_1-x_2+4x_3\\\\\n3x_1-x_2\n\\end{pmatrix}=x_1\\begin{pmatrix}\n 1 \\\\\n 2 \\\\\n-1\\\\\n3\n\\end{pmatrix}+x_2\\begin{pmatrix}\n -1 \\\\\n 0 \\\\\n-1\\\\\n-1\n\\end{pmatrix}+x_3\\begin{pmatrix}\n 2 \\\\\n -2 \\\\\n4\\\\\n0\n\\end{pmatrix}="
"=span((1,2,-1,3),(-1,0,-1,-1),(2,-2,4,0))"
Comments
Leave a comment