(1) The table below shows the calories, fat, and carbohydrates per ounce for three brands of cereal.
Calories Fat Carbohydrates
Cereal Brand A 10 0 11
Cereal Brand B 100 0.2 22.5
Cereal Brand C 130 5.6 19
Total Required 400 6.2 92
(i) Using the information in the table above, write a system of three equations.
(ii) Write a system in matrix form Ax = b.
(iii) Using the Cramer's Rule or Inverse Method, find the amount of each brand of cereal that will give the level of nutrition required.Â
(i)
"\\def\\arraystretch{1.5}\n \\begin{array}{c}\n 10x+100y+130z=400 \\\\\n 0x+0.2y+5.6z=6.2 \\\\\n 11x+22.5y+19z=92\n\\end{array}"(ii)
"AX=B"
"\\begin{pmatrix}\n 10& 100& 130 \\\\\n 0& 0.2& 5.6 \\\\\n11 & 22.5 & 19\n\\end{pmatrix}\\begin{pmatrix}\n x\\\\\n y \\\\\nz\n\\end{pmatrix}=\\begin{pmatrix}\n 400\\\\\n 6.2 \\\\\n92\n\\end{pmatrix}"
(iii)
"=10\\begin{vmatrix}\n 0.2 & 5.6 \\\\\n 22.5 & 19\n\\end{vmatrix}-0\\begin{vmatrix}\n 100 & 130 \\\\\n 22.5 & 19\n\\end{vmatrix}+11\\begin{vmatrix}\n 100 &130 \\\\\n 0.2 & 5.6\n\\end{vmatrix}"
"=-1222-0+5874=4652\\not=0"
"=400\\begin{vmatrix}\n 0.2 & 5.6 \\\\\n 22.5 & 19\n\\end{vmatrix}-6.2\\begin{vmatrix}\n 100 & 130 \\\\\n 22.5 & 19\n\\end{vmatrix}+92\\begin{vmatrix}\n 100 &130 \\\\\n 0.2 & 5.6\n\\end{vmatrix}"
"=-48880+6355+49128=6603"
"=10\\begin{vmatrix}\n 6.2 & 5.6 \\\\\n 92 & 19\n\\end{vmatrix}-0\\begin{vmatrix}\n 400 & 130 \\\\\n 92 & 19\n\\end{vmatrix}+11\\begin{vmatrix}\n 400 &130 \\\\\n 6.2 & 5.6\n\\end{vmatrix}"
"=-3974-0+15774=11800"
"\\Delta_3=\\begin{vmatrix}\n 10& 100& 400 \\\\\n 0& 0.2& 6.2 \\\\\n11 & 22.5 & 92\n\\end{vmatrix}"
"=10\\begin{vmatrix}\n 0.2 & 6.2 \\\\\n 22.5 & 92\n\\end{vmatrix}-0\\begin{vmatrix}\n 100 & 400 \\\\\n 22.5 & 92\n\\end{vmatrix}+11\\begin{vmatrix}\n 100 &400 \\\\\n 0.2 & 6.2\n\\end{vmatrix}"
"=-1211-0+5940=4729"
"x=\\dfrac{\\Delta_1}{\\Delta}=\\dfrac{6603}{4652}=1.41939"
"y=\\dfrac{\\Delta_2}{\\Delta}=\\dfrac{11800}{4652}=2.53654"
"z=\\dfrac{\\Delta_3}{\\Delta}=\\dfrac{4729}{4652}=1.01655"
Comments
Leave a comment