Proof whether the following operations are inner product operations:
⟨x, y⟩ = 2x1y1 − x1y2 − x2y1 + 2x2y2, x=(x1, x2), y=(y1, y2)
1. Positive Definite Property:
"=(x_1^2+x_2^2)+(x_1-x_2)^2\\geq0"
The value equals zero if and only if both summands are zero, i.e., when "x_1=x_2=0"
For any "x\\in V, \\langle x,x\\rangle\\geq0;" and "\\langle x,x\\rangle=0" if and only if "x=0."
2. Symmetric Property
"=2y_1x_1-y_1x_2-y_2x_1+2y_2x_2=\\langle y, x\\rangle"
3. Linearity
"=2(ax_1+by_1)z_1-(ax_1+by_1)z_2-(ax_2+by_2)z_1"
"+2(ax_2+by_2)z_2"
"=a(2x_1z_1-x_1z_2-x_2z_1+x_2z_2)"
"+b(2y_1z_1-y_1z_2-y_2z_1+y_2z_2)"
"=a\\langle x,z\\rangle+b\\langle y,z\\rangle"
Then "\\langle x,y\\rangle" is an inner product on "V."
Comments
Leave a comment