Let P = [ -1 4 5] . Determine P^-1 using
[ 0 2 -3]
[ 0 0 8]
Cayley- Hamilton theorem. Further use P^-1 to express (x1, x2, x3) in terms of (-1,0,0), (4,2,0), ( 5,-3,8)
"P=\\begin{bmatrix}\n-1&4&5\n\\\\\n0&2&-3\n\\\\\n0&0&8\n\\end{bmatrix}"
"p(\\lambda)=\\det (P-\\lambda I)=\\begin{vmatrix}\n-1-\\lambda&4&5\n\\\\ 0&2-\\lambda &-3\n\\\\\n0&0&8-\\lambda \n\\end{vmatrix}\n=(-1-\\lambda )(2-\\lambda )(8-\\lambda)"
"p(\\lambda )=-x^3+9x^2-6x-16"
"-P^3+9P^2-6P-16I=0"
"P(-P^2+9P-6I)=16I"
"16P^{-1}=-P^2+9P-6I=-\\begin{bmatrix}\n1&4&23\n\\\\\n0&4&-30\n\\\\\n0&0&64\n\\end{bmatrix}+9\\begin{bmatrix}\n-1&4&5\n\\\\\n0&2&-3\n\\\\\n0&0&8\n\\end{bmatrix}-\\begin{bmatrix}\n6&0&0\n\\\\\n0&6&0\n\\\\\n0&0&6\n\\end{bmatrix}"
"16P^{-1}=\\begin{bmatrix}\n-16&32&22\n\\\\\n0&8&3\n\\\\\n0&0&2\n\\end{bmatrix}"
"P^{-1}=\\frac{1}{16}\\begin{bmatrix}\n-16&32&22\n\\\\\n0&8&3\n\\\\\n0&0&2\n\\end{bmatrix}"
Let "\\begin{bmatrix}\nx_1 \\\\ x_2\\\\ x_3\n\\end{bmatrix}=a\\cdot \\begin{bmatrix}-1\\\\0\\\\0 \\end{bmatrix}+ b\\cdot \\begin{bmatrix}4\\\\2\\\\0 \\end{bmatrix}+ c\\cdot \\begin{bmatrix}5\\\\-3\\\\8 \\end{bmatrix}=P\\begin{bmatrix}a\\\\b\\\\c\\end{bmatrix}" .
Then "\\begin{bmatrix}\na\\\\b\\\\c\n\\end{bmatrix}=P^{-1}\\begin{bmatrix}x_1\\\\x_2\\\\x_3\\end{bmatrix}=\n\\begin{bmatrix}\n-x_1+2x_2+\\tfrac{11}{8} x_3\n\\\\ \\tfrac{1}{2}x_2+\\tfrac{3}{16}x_3\n\\\\\n\\tfrac{1}{8}x_3\n\\end{bmatrix}" .
So, "\\begin{bmatrix}\nx_1 \\\\ x_2\\\\ x_3\n\\end{bmatrix}=(-x_1+2x_2+\\tfrac{11}{8}x_3)\\cdot \\begin{bmatrix}-1\\\\0\\\\0 \\end{bmatrix}+ (\\tfrac{1}{2}x_2+\\tfrac{3}{16}x_3)\\cdot \\begin{bmatrix}4\\\\2\\\\0 \\end{bmatrix}+ \\tfrac{1}{8}x_3\\cdot \\begin{bmatrix}5\\\\-3\\\\8 \\end{bmatrix}" .
Answers:
"P^{-1}=\\frac{1}{16}\\begin{bmatrix}\n-16&32&22\n\\\\\n0&8&3\n\\\\\n0&0&2\n\\end{bmatrix}"
"\\begin{bmatrix}\nx_1 \\\\ x_2\\\\ x_3\n\\end{bmatrix}=(-x_1+2x_2+\\tfrac{11}{8}x_3)\\cdot \\begin{bmatrix}-1\\\\0\\\\0 \\end{bmatrix}+ (\\tfrac{1}{2}x_2+\\tfrac{3}{16}x_3)\\cdot \\begin{bmatrix}4\\\\2\\\\0 \\end{bmatrix}+ \\tfrac{1}{8}x_3\\cdot \\begin{bmatrix}5\\\\-3\\\\8 \\end{bmatrix}"
Comments
Leave a comment