Check that T = R^3 to R^3, defined by
T(x1,x2,X3)= (x1+X3, x2+2x3, x1-x2-x3) is a linear operator. Also find the kernel
properties of linear operator:
"T(x+y)=T(x)+T(y)"
"T(cx)=cT(x)"
we have:
"T((x_1,x_2,x_3)+(y_1,y_2,y_3))="
"=(x_1+x_3+y_1+y_3, x_2+2x_3+y_2+2y_3, x_1-x_2-x_3+y_1-y_2-y_3)"
"T(x_1,x_2,x_3)+T(y_1,y_2,y_3)="
"=(x_1+x_3, x_2+2x_3, x_1-x_2-x_3) +(y_1+y_3, y_2+2y_3, y_1-y_2-y_3)="
"=(x_1+x_3+y_1+y_3, x_2+2x_3+y_2+2y_3, x_1-x_2-x_3+y_1-y_2-y_3)"
"T((x_1,x_2,x_3)+(y_1,y_2,y_3))=T(x_1,x_2,x_3)+T(y_1,y_2,y_3)"
"T(cx_1,cx_2,cx_3)=(c(x_1+x_3), c(x_2+2x_3),c( x_1-x_2-x_3))"
"cT(x_1,x_2,x_3)=c(x_1+x_3, x_2+2x_3, x_1-x_2-x_3)="
"=(c(x_1+x_3), c(x_2+2x_3),c( x_1-x_2-x_3))"
"T(cx_1,cx_2,cx_3)=cT(x_1,x_2,x_3)"
so, "T(x_1,x_2,x_3)" is linear operator
for kernel:
"T(x_1,x_2,x_3)=(x_1+x_3, x_2+2x_3, x_1-x_2-x_3) =0"
"x_1+x_3=0"
"x_2+2x_3=0"
"x_1-x_2-x_3=0"
"x_1=-x_3,x_2=-2x_3"
kernel:
"(x_1,x_2,x_3)=(-x_3,-2x_3,x_3)"
Comments
Leave a comment