15. Suppose T : R^2"\\to" R^3 is linear defined by T(x, y) =(x + 3y, x - y, x). Then
(i) 1
(ii) 2
(iii) 3
(iv) None
16. Suppose T : R^3"\\to" R^3 is linear and has an upper-triangular matrix with respect to the basis (1,0,0),(1,1,1),(1,1,2). Then, the orthonormal basis of R^3 with respect to which T has an upper-triangular matrix is...
(i) (1, 0, 0), (0, 1/(√2), 1/(√2)), (0, - 1/(√2), 1/(√2))
(ii) (1, 0, 0), (0, 1, 0), (0, 1/(√2), - 1/(√2)
(iii) (1, 0, 0), (0, - 1, 1), (0, 1, 1)
(iv) None
17. Which of the following defines an inner product
(i) <(x base 1, x base 2), y base 1, y base 2)>2x base 1 y base 1 +x base 2 y base 2 in R^2
(ii) <(x base 1, x base 2), y base 1, y base 2)>x base 1 y base 1 +2x base 2 y base 2 - 1 in R^2
(iii) <a base 1 + b base 1 x +c base 1 x^2, a base 2 +b base 2 x + c base 2 x^2 > = a base 1 b base 1 +a base 2 b base 2 +c base 1 c base 2 in P base 2
15)
"T(x,y)=(x+3y,x-y,x)"
"T(x,y)=\\begin{pmatrix}\n x+3y \\\\\n x-y\\\\\nx\n\\end{pmatrix}"
"=x\\begin{pmatrix}\n 1 \\\\\n 1\\\\\n1\n\\end{pmatrix}+y\\begin{pmatrix}\n 3 \\\\\n -1\\\\\n0\n\\end{pmatrix}"
"T=\\begin{pmatrix}\n 1 & 3\\\\\n 1 & -1\\\\\n1&0\n\\end{pmatrix}"
rref of "T=\\begin{pmatrix}\n 1& 0 \\\\\n 0 & 1\\\\\n0&0\n\\end{pmatrix}"
Rank of T is 2
Correct option is "(ii)"
16)
Using Gram-Schmidt process
Let "V_1=(1,0,0)"
"V_2=(1,1,1)-\\frac{[(1,1,1).(1,0,0)]}{(1,0,0).(1,0,0)}.(1,0,0)"
"=(1,1,1)-(1,0,0)"
"=(0,1,1)"
"V_3=(1,1,2)-\\frac{[(1,1,2).(1,0,0)]}{(1,0,0).(1,0,0)}.(1,0,0)-\\frac{[(1,1,2).(0,1,1)]}{(0,1,1).(0,1,1)}(0,1,1)"
"=(1,1,2)-(1,0,0)-\\frac{3}{2}(0,1,1)"
"\u00b0(0,-\\frac{1}{2},\\frac{1}{2})"
"e_1=(1,0,0)"
"e_2=\\frac{1}{\u221a2}(0,1,1)"
"e_3=\\frac{1}{\u221a2}(0,-1,1)"
Correct option is (i)
17)
For a finite-dimension polynomial vector
Space:
"<p,q>=p_0q_0+p_1q_1+.....+p_nq_n"
Option (iii) is the correct one
Comments
Leave a comment