Q1.
Consider the sets
A = {x "\\in" Z : x = 2 (y - 2) for some
y "\\in" Z} and B = {x "\\in" Z : x = 2z for some z "\\in" Z}. Then
(i) A and B are equal,
(ii) A {\displaystyle \subsetneq } B,
(iii) B {\displaystyle \subsetneq } A
(1) (i) only
(2) (ii) only.
(3) (iii) only
(4) None of the given answers is true.
Q2.
Consider a function f: R → R^+ defined as f(x) =e^x: Then the image of S ={x ∈ R: 0 ≤ x^2 - 9} is
(i) (- ∞; e^-3]U[e^3;∞);
(ii) [e^-3; e3^];
(iii)[e^3;∞)
(4) None of the given answers is true.
Q3.
The two distinct square roots of i is
(1) √2 + √2i and -√2 - √2i
(2) 2√2 + 2√2i and - 2√2 - 2√2i
(3)√2/2 + √2/2(I) and - √2/2 - √2/2(I)
(4) None of the given answers is true.
"Q1.\\\\\nA=\\{x\\in \\Z:x=2(y-2), y\\in \\Z\\}\\\\\nB=\\{x\\in \\Z: x=2y, y\\in Z\\}\\\\\n\\text{If, $k\\in A$ then $k=2(k'-2)$ for some $k'\\in \\Z$}\\\\\nk'\\in \\Z\\Rightarrow k''=k'-2\\in \\Z\\\\\n\\text{Now, } k=2k'', k''\\in \\Z\\Rightarrow k\\in B\\Rightarrow A\\subseteq B\\\\\n\\text{Simillarly,}\\\\\n\\text{If, $l\\in B$ then $l=2l'$ for some $l'\\in \\Z$}\\\\\nl'\\in \\Z\\Rightarrow l''=l'+2\\in \\Z\\\\\n\\text{Now, } l=2(l''-2), l''\\in \\Z\\Rightarrow l\\in A\\Rightarrow B\\subseteq A\\\\\n\\text{Hence, } A=B"
So option (1) is correct.
"Q2.\\\\\nf: R \u2192 R^+ \\ni f(x)=e^x\\\\"
Now "S =\\{x \u2208 R: 0 \u2264 x^2 - 9\\}"
"\\therefore x^2-9\\geq 0\\Rightarrow (x+3)(x-3)\\geq 0\\\\\n\\Rightarrow x \\in (-\\infin, -3] \\cup [3,\\infin)\\\\\n\\therefore S=\\{x| x \\in (-\\infin, -3] \\cup [3,\\infin)\\}"
So, Image of S is "(0,\\frac{1}{e^3}]\\cup [e^3, \\infin)"
Therefore option (1) is correct option.
"Q3.\\\\\n|i|=1\\\\\n\\therefore \\text{We can write $i$ as }e^\\frac{i\\pi}{2}.\n\\\\\\text{Square roots of $e^\\frac{i\\pi}{2}$ are $\\pm e^\\frac{i\\pi}{4}$}\\\\\n\\text{Now, } \\\\e^\\frac{i\\pi}{4}=cos(\\pi\/4)+i~sin(\\pi\/4)\\\\=\\dfrac{1}{\\sqrt2}+\\dfrac{i}{\\sqrt2}=\\dfrac{\\sqrt2}{2}+\\dfrac{i\\sqrt2}{2}"
So square roots of i are "\\dfrac{\\sqrt2}{2}+\\dfrac{i\\sqrt2}{2}, -\\dfrac{\\sqrt2}{2}-\\dfrac{i\\sqrt2}{2}"
"\\therefore" Option (3) is the correct option.
Comments
Leave a comment