2x square + y square+z square +4 yz +2 xy-2 xx
"2x^{2}+y^{2}+z^{2}+4yz+2xy-2xz"
NOTE: WE SHALL RE-REPRESENT THE VARAIBALE x, y and z TO VARIABLES "x_{1},x_{2}\\hspace{0.1cm}and\\hspace{0.1cm}x_{3}" respectively.
NOW, using "x_{1},x_{2}\\hspace{0.1cm}and\\hspace{0.1cm}x_{3}"
"\\displaystyle Q(x)=2x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+4x_{2}x_{3}+2x_{1}x_{2}-2x_{1}x_{3}"
The symmetric matrix A with the given quadratic form is
"A=" "\\begin{bmatrix}\n 2 & 1 & -1 \\\\\n 1 & 1 & 2\\\\\n -1 & 2 & 1 \n\\end{bmatrix}"
The characteristic equation of A is
"\\mid(A-\\lambda I)\\mid=-\\lambda^{3}+4\\lambda^{2}+\\lambda-12=0\\\\\\implies \\lambda=3,\\frac{-1+17}{2},\\frac{1+17}{2}"
The corresponding eigen values are:
for "\\lambda_{1}=3,\\hspace{0.2cm}is\\hspace{0.2cm}X_{1}=\\begin{bmatrix}\n 0 \\\\\n 1\\\\\n 1\n\\end{bmatrix}"
for "\\lambda_{2}=\\frac{-1+17}{2},\\hspace{0.2cm}is\\hspace{0.2cm}X_{2}=\\begin{bmatrix}\n \\frac{-3+17}{2} \\\\\n -1\\\\\n 1\n\\end{bmatrix}"
for "\\lambda_{3}=1,\\hspace{0.2cm}is\\hspace{0.2cm}X_{3}=\\begin{bmatrix}\n -\\frac{3+17}{2} \\\\\n -1\\\\\n 1\n\\end{bmatrix}"
Clearly, the eigen vectors "X_{1}=\\begin{bmatrix}\n 0 \\\\\n 1\\\\\n 1 \n\\end{bmatrix}" , "X_{2}=\\begin{bmatrix}\n \\frac{-3+17}{2} \\\\\n -1\\\\\n 1\n\\end{bmatrix}" and "X_{3}=\\begin{bmatrix}\n -\\frac{3+17}{2} \\\\\n -1\\\\\n 1\n\\end{bmatrix}" are linearly independent and orthogonal.
Comments
Leave a comment