A sequence of vectors "\\vec v_1, \\vec v_2,..., \\vec v_k" from a vector space "V" is said to be linearly dependent, if there exist scalars "a_1, a_2, ..., a_k" not all zero, such that
"a_1\\vec v_1+a_2\\vec v_1+...+a_k\\vec v_k=\\vec 0" where "\\vec 0" denotes the zero vector.
Consider the set of vectors "\\vec v_1=(1,1,2), \\vec v_2=(2,3,0), \\vec v_3=(0,1,2)" then the condition for linear dependence seeks a set of non-zero scalars, such that
"\\begin{bmatrix}\n 1 & 2 & 0 \\\\\n 1 & 3 & 1 \\\\\n 2 & 0 & 2 \\\\\n\\end{bmatrix}\\begin{bmatrix}\n a_1 \\\\\n a_2 \\\\\na_3\n\\end{bmatrix}=\\begin{bmatrix}\n 0 \\\\\n 0 \\\\\n0\n\\end{bmatrix}" Augmented matrix
"\\begin{bmatrix}\n 1 & 2 & 0 & \\ 0 \\\\\n 1 & 3 & 1 & \\ 0 \\\\\n 2 & 0 & 2 & \\ 0 \\\\\n\\end{bmatrix}" "R_2=R_2-R_1"
"\\begin{bmatrix}\n 1 & 2 & 0 & \\ 0 \\\\\n 0 & 1 & 1 & \\ 0 \\\\\n 2 & 0 & 2 & \\ 0 \\\\\n\\end{bmatrix}" "R_3=R_3-2R_1"
"\\begin{bmatrix}\n 1 & 2 & 0 & \\ 0 \\\\\n 0 & 1 & 1 & \\ 0 \\\\\n 0 & -4 & 2 & \\ 0 \\\\\n\\end{bmatrix}" "R_1=R_1-2R_2"
"\\begin{bmatrix}\n 1 & 0 & -2 & \\ 0 \\\\\n 0 & 1 & 1 & \\ 0 \\\\\n 0 & -4 & 2 & \\ 0 \\\\\n\\end{bmatrix}" "R_3=R_3+4R_2"
"\\begin{bmatrix}\n 1 & 0 & -2 & \\ 0 \\\\\n 0 & 1 & 1 & \\ 0 \\\\\n 0 & 0 & 6 & \\ 0 \\\\\n\\end{bmatrix}" "R_3=R_3\/6"
"\\begin{bmatrix}\n 1 & 0 & -2 & \\ 0 \\\\\n 0 & 1 & 1 & \\ 0 \\\\\n 0 & 0 & 1 & \\ 0 \\\\\n\\end{bmatrix}" "R_1=R_1+2R_3"
"\\begin{bmatrix}\n 1 & 0 & 0 & \\ 0 \\\\\n 0 & 1 & 1 & \\ 0 \\\\\n 0 & 0 & 1 & \\ 0 \\\\\n\\end{bmatrix}" "R_2=R_2-R_3"
"\\begin{bmatrix}\n 1 & 0 & 0 & \\ 0 \\\\\n 0 & 1 & 0 & \\ 0 \\\\\n 0 & 0 & 1 & \\ 0 \\\\\n\\end{bmatrix}"Then "a_1=a_2=a_3=0."
Therefore the vectors "\\vec v_1=(1,1,2), \\vec v_2=(2,3,0), \\vec v_3=(0,1,2)" in "R ^3" are linearly independent.
Comments
Leave a comment