Verify cayley hamiltan theorem for A=[ 124212421]
"A=\\begin{pmatrix}\n1&2&4\\\\\n2&1&2\\\\\n4&2&1\n\\end{pmatrix}"
The characteristic polynomial of this matrix is
"P_A(\\lambda)=\\det(A-\\lambda I)=\\det\\begin{pmatrix}\n1-\\lambda&2&4\\\\\n2&1-\\lambda&2\\\\\n4&2&1-\\lambda\n\\end{pmatrix}="
"(1-\\lambda)^3+16+16-16(1-\\lambda)-4(1-\\lambda)-4(1-\\lambda)="
"(1-\\lambda)^3-24(1-\\lambda)+32"
By the Cayley - Hamilton theorem, it must be "P_A(A)=0". Let's verify this equality.
"P_A(A)=(I-A)^3-24(I-A)+32I"
"I-A=\\begin{pmatrix}\n0&-2&-4\\\\\n-2&0&-2\\\\\n-4&-2&0\n\\end{pmatrix}"
"(I-A)^2=\\begin{pmatrix}\n20&8&4\\\\\n8&8&8\\\\\n4&8&20\n\\end{pmatrix}"
"(I-A)^3=\\begin{pmatrix}\n-32 & -48 & -96\\\\\n-48 & -32 & -48\\\\\n-96 & -48 & -32\n\\end{pmatrix}"
"P_A(A)=\\begin{pmatrix}\n-32 & -48 & -96\\\\\n-48 & -32 & -48\\\\\n-96 & -48 & -32\n\\end{pmatrix}-\n24\\begin{pmatrix}\n0&-2&-4\\\\\n-2&0&-2\\\\\n-4&-2&0\n\\end{pmatrix}+"
"+\\begin{pmatrix}\n32&0&0\\\\\n0&32&0\\\\\n0&0&32\n\\end{pmatrix}=\\begin{pmatrix}\n0&0&0\\\\\n0&0&0\\\\\n0&0&0\n\\end{pmatrix}"
As we can see, the Cayley - Hamilton equality is true.
Comments
Leave a comment