A company produces three products which are interdependent. These are A, B and C. The flow of inputs and outputs between the products is represented in the table below:
Inputs (in thousands of units)
A B C Final demand
Outputs
(in thousands of units) A
B
C 40
60
80 65
130
65 75
75
25 20
60
80
Required:
i) Derive the technical coefficients matrix (3 marks)
ii) Determine the Leontief’s inverse matrix (12 marks)
iii) Compute the output level for each product if the final demand for product A increased by 2000 units, that of product C decreased by 1,000 units and the final demand for product B remained unchanged. (5 marks)
i) The technical coefficients matrix
The technical coefficient matrix refers to the matrix of B.
B= "\\begin{bmatrix}\nb11 & b12 & b13 \\\\\nb21 & b22 & b23 \\\\\nb31 & b32 & b33 \\\\\n\\end{bmatrix}"
where,
b11 = 40/200 = 0.2
b12= 65/325= 0.2
b13= 75/250 = 0.3
b21=60/200 = 0.3
b22=130/325 = 0.4
b23=75/250 = 0.3
b31=80/200= 0.4
b32=65/325 = 0.2
b33= 25/250 = 0.1
hence,
B= "\\begin{bmatrix}\n0.2 & 0.2 & 0.3 \\\\\n0.3 & 0.4 & 0.3 \\\\\n0.4 & 0.2 & 0.1 \\\\\n\\end{bmatrix}" [Answer]
ii) The Leontief’s inverse matrix
Leontief's inverse matrix is given by (I-B)-1
I-B = "\\begin{bmatrix}\n1 &0 & 0 \\\\\n0 & 1 & 0 \\\\\n0 & 0 &1 \\\\\n\\end{bmatrix} - \\begin{bmatrix}\n0.2 & 0.2 & 0.3 \\\\\n0.3 & 0.4 & 0.3 \\\\\n0.4 & 0.2 & 0.1 \\\\\n\\end{bmatrix}=\\begin{bmatrix}\n0.8 & -0.2 & -0.3 \\\\\n-0.3 & 0.6 & -0.3 \\\\\n-0.4 & -0.2 & 0.9 \\\\\n\\end{bmatrix}"
(I-B)-1
"\\begin{bmatrix}\n0.8 & -0.2 & -0.3 \\\\\n-0.3 & 0.6 & -0.3 \\\\\n-0.4 & -0.2 & 0.9 \\\\\n\\end{bmatrix}|\\begin{bmatrix}\n1 &0 & 0 \\\\\n0 & 1 & 0 \\\\\n0 & 0 &1 \\\\\n\\end{bmatrix}" Turn the left matrix into the right matrix
R1 ▶ ( "\\frac{5}{4}" )R1
"\\begin{bmatrix}\n1 & \\frac{-1}{4} & \\frac{-3}{8} \\\\\n\\frac{-3}{10} & \\frac{3}{5} & \\frac{-3}{10} \\\\\n\\frac{-2}{5} &\\frac{-1}{5} & \\frac{9}{10} \\\\\n\\end{bmatrix}|\\begin{bmatrix}\n\\frac{5}{4} &0 & 0 \\\\\n0 & 1 & 0 \\\\\n0 & 0 &1 \\\\\n\\end{bmatrix}"
R2 ▶R2- ( "\\frac{-3}{10}" )R1
"\\begin{bmatrix}\n1 & \\frac{-1}{4} & \\frac{-3}{8} \\\\\n0 & \\frac{21}{40} & \\frac{-33}{80} \\\\\n\\frac{-2}{5} &\\frac{-1}{5} & \\frac{9}{10} \\\\\n\\end{bmatrix}|\\begin{bmatrix}\n\\frac{5}{4} &0 & 0 \\\\\n\\frac{3}{8} & 1 & 0 \\\\\n0 & 0 &1 \\\\\n\\end{bmatrix}"
R3 ▶ R3 -"(\\displaystyle - \\frac{2}{5}\n\n\u2212\u200b5\n\n\u200b\n\n\u200b2\n\n\n\n\u200b\u200b)R1"
"\\begin{bmatrix}\n1 & \\frac{-1}{4} & \\frac{-3}{8} \\\\\n0 & \\frac{21}{40} & \\frac{-33}{80} \\\\\n0 &\\frac{-3}{10} & \\frac{3}{4} \\\\\n\\end{bmatrix}|\\begin{bmatrix}\n\\frac{5}{4} &0 & 0 \\\\\n\\frac{3}{8} & 1 & 0 \\\\\n\\frac{1}{2} & 0 &1 \\\\\n\\end{bmatrix}"
R2 ▶ "(\\displaystyle 1.90476)R2"
"\\begin{bmatrix}\n1 & \\frac{-1}{4} & \\frac{-3}{8} \\\\\n0 & 1 & \\frac{-11}{14} \\\\\n0 &\\frac{-3}{10} & \\frac{3}{4} \\\\\n\\end{bmatrix}|\\begin{bmatrix}\n\\frac{5}{4} &0 & 0 \\\\\n\\frac{3}{8} & \\frac{40}{21} & 0 \\\\\n\\frac{1}{2} & 0 &1 \\\\\n\\end{bmatrix}"
R3 ▶ R3 - "(\\displaystyle - \\frac{3}{10}\u200b\u200b)R2"
"\\begin{bmatrix}\n1 & \\frac{-1}{4} & \\frac{-3}{8} \\\\\n0 & 1 & \\frac{-11}{14} \\\\\n0 &0 & \\frac{18}{35} \\\\\n\\end{bmatrix}|\\begin{bmatrix}\n\\frac{5}{4} &0 & 0 \\\\\n\\frac{3}{8} & \\frac{40}{21} & 0 \\\\\n\\frac{5}{7} & \\frac{4}{7} &1 \\\\\n\\end{bmatrix}"
R3 ▶ "(\\displaystyle 1.94444)R3"
"\\begin{bmatrix}\n1 & \\frac{-1}{4} & \\frac{-3}{8} \\\\\n0 & 1 & \\frac{-11}{14} \\\\\n0 &0 & 1 \\\\\n\\end{bmatrix}|\\begin{bmatrix}\n\\frac{5}{4} &0 & 0 \\\\\n\\frac{3}{8} & \\frac{40}{21} & 0 \\\\\n\\frac{25}{18} & \\frac{10}{9} &\\frac{35}{18} \\\\\n\\end{bmatrix}"
R2 ▶ R2 - "(\\displaystyle -0.785714)R3"
"\\begin{bmatrix}\n1 & \\frac{-1}{4} & \\frac{-3}{8} \\\\\n0 & 1 & 0\\\\\n0 &0 & 1 \\\\\n\\end{bmatrix}|\\begin{bmatrix}\n\\frac{5}{4} &0 & 0 \\\\\n\\frac{65}{36} & \\frac{25}{9} & \\frac{55}{36} \\\\\n\\frac{25}{18} & \\frac{10}{9} &\\frac{35}{18} \\\\\n\\end{bmatrix}"
R1 ▶ R1 - "(\\displaystyle - \\frac{3}{8}\u200b\u200b)R3"
"\\begin{bmatrix}\n1 & \\frac{-1}{4} & 0 \\\\\n0 & 1 & 0\\\\\n0 &0 & 1 \\\\\n\\end{bmatrix}|\\begin{bmatrix}\n\\frac{85}{48} &\\frac{5}{12} & \\frac{35}{48} \\\\\n\\frac{65}{36} & \\frac{25}{9} & \\frac{55}{36} \\\\\n\\frac{25}{18} & \\frac{10}{9} &\\frac{35}{18} \\\\\n\\end{bmatrix}"
R1 ▶ R1 - (\displaystyle - \frac{1}{4})R2
"\\begin{bmatrix}\n1 & 0 & 0 \\\\\n0 & 1 & 0\\\\\n0 &0 & 1 \\\\\n\\end{bmatrix}|\\begin{bmatrix}\n\\frac{20}{9} &\\frac{10}{9} & \\frac{10}{9} \\\\\n\\frac{65}{36} & \\frac{25}{9} & \\frac{55}{36} \\\\\n\\frac{25}{18} & \\frac{10}{9} &\\frac{35}{18} \\\\\n\\end{bmatrix}"
Therefore,
[I-B]-1= "\\begin{bmatrix}\n\\frac{20}{9} &\\frac{10}{9} & \\frac{10}{9} \\\\\n\\frac{65}{36} & \\frac{25}{9} & \\frac{55}{36} \\\\\n\\frac{25}{18} & \\frac{10}{9} &\\frac{35}{18} \\\\\n\\end{bmatrix}" [Answer]
iii) Compute the output level for each product if the final demand for product A increased by 2000 units, that of product C decreased by 1,000 units and the final demand for product B remained unchanged.
X= [I-B]-1D
D="\\begin{bmatrix}\n20+2 \\\\\n60\\\\\n80-1\\\\\n\\end{bmatrix} =\n\\begin{bmatrix}\n22 \\\\\n60\\\\\n79\\\\\n\\end{bmatrix}"
X="\\begin{bmatrix}\n\\frac{20}{9} &\\frac{10}{9} & \\frac{10}{9} \\\\\n\\frac{65}{36} & \\frac{25}{9} & \\frac{55}{36} \\\\\n\\frac{25}{18} & \\frac{10}{9} &\\frac{35}{18} \\\\\n\\end{bmatrix} \\begin{bmatrix}\n22 \\\\\n60\\\\\n89\\\\\n\\end{bmatrix}"
Multiply the rows of Matrix A with the columns of Martrix B
X= "\\begin{bmatrix}\n\\frac{20.22}{9} +\\frac{10.60}{9} + \\frac{10.79}{9} \\\\\n\\frac{22.65}{36} + \\frac{55.79}{36} + \\frac{25.60}{9} \\\\\n\\frac{25.25}{18} + \\frac{10.60}{9} +\\frac{35.79}{18} \\\\\n\\end{bmatrix}"
="\\begin{bmatrix}\n\\frac{610}{3} \\\\\n\\frac{3925}{12} \\\\\n\\frac{1505}{6} \\\\\n\\end{bmatrix}" (In thousands of units) [Answer]
Comments
Leave a comment