Let V = set of all 3x1 matrices.
Define
+ to be the matrix addition
⦁ to be the matrix multiplication by a number
We know that V is a vector space. If W [a, b, 1] , a, b element of R then W is a subspace of V.
"\\vec{x_1}=[a_1,b_1,1]\\in W, a_1,b_1\\in R\\\\\n\\vec{x_2}=[a_2,b_2,1]\\in W, a_2,b_2\\in R\\\\"
"1. \\vec{x_1}+\\vec{x_2}=[a_1,b_1,1]+[a_2,b_2,1]=\\\\\n=[a_1+a_2,b_1+b_2,2]\\not\\in W"
W is not a subspace of V.
Comments
Leave a comment