Which of the following sets of polynomials span P2 ?
a. {t²+1, t-1, t²+t}
B. {t²+ 2, 2t²- t+1, t + 2 , t²+t+4}
Solution (a)
If "\\left\\{ {{t^2} + 1,\\,\\,t - 1,\\,\\,{t^2} + t} \\right\\}\\" , span P2, then "{t^2} + 1,\\,\\,t - 1,\\,\\,{t^2} + t\\" must be linearly independent.
Then for, three arbitrary constants "{c_1},\\,\\,{c_2},\\,\\,{c_3}"
"\\begin{array}{l}\n{c_1}\\left( {{t^2} + 1} \\right) + {c_2}\\left( {t - 1} \\right) + {c_3}\\left( {{t^2} + t} \\right) = 0\\\\\n{c_1}{t^2} + {c_1} + {c_2}t - {c_2} + {c_3}{t^2} + {c_3}t = 0\\\\\n\\left( {{c_1} + {c_3}} \\right){t^2} + {c_2}t + {c_1} - {c_2} = 0 \\cdot {t^2} + 0 \\cdot t + 0\n\\end{array}"
This gives,
"{c_1} + {c_3} = 0\\\\\n{c_2} = 0\\\\\n{c_1} - {c_2} = 0"
We solve and get "{c_1} = {c_2} = {c_3} = 0\\"
Therefore, "{t^2} + 1,\\,\\,t - 1,\\,\\,{t^2} + t\\"are linearly independent and hence span polynomial of degree 2.
Solution (b)
If, "\\left\\{ {{t^2} + 2,\\,\\,\\,2{t^2} - t + 1,\\,\\,\\,t + 2,\\,\\,{t^2} + t + 4} \\right\\}\\" span P2, then "{{t^2} + 2,\\,\\,\\,2{t^2} - t + 1,\\,\\,\\,t + 2,\\,\\,{t^2} + t + 4}" must be linearly independent.
Then for, four arbitrary constants "{c_1},\\,\\,{c_2},\\,\\,{c_3},\\,{c_4}\\"
"\\begin{array}{l}\n{t^2} + 2,\\,\\,\\,2{t^2} - t + 1,\\,\\,\\,t + 2,\\,\\,{t^2} + t + 4\\\\\n{c_1}\\left( {{t^2} + 2} \\right) + {c_2}\\left( {2{t^2} - t + 1} \\right) + {c_3}\\left( {t + 2} \\right) + {c_4}\\left( {{t^2} + t + 4} \\right) = 0\\\\\n{c_1}{t^2} + 2{c_1} + 2{c_2}{t^2} - {c_2}t + {c_2} + {c_3}t + 2{c_3} + {c_4}{t^2} + {c_4}t + 4{c_4} = 0\\\\\n\\left( {{c_1} + 2{c_2} + {c_4}} \\right){t^2} + \\left( { - {c_2} + {c_3} + {c_4}} \\right)t + \\left( {2{c_1} + {c_2} + 2{c_3} + 4{c_4}} \\right) = 0 \\cdot {t^2} + 0 \\cdot t + 0\n\\end{array}"
This gives,
"\\begin{array}{l}\n{c_1} + 2{c_2} + {c_4} = 0 & & ... & \\left( 1 \\right)\\\\\n - {c_2} + {c_3} + {c_4} = 0 & & ... & \\left( 2 \\right)\\\\\n2{c_1} + {c_2} + 2{c_3} + 4{c_4} & & ... & \\left( 3 \\right)\n\\end{array}"
These are three equations, and we have four unknowns. So, there are infinite solutions.
Therefore, the are linearly dependent and hence "{{t^2} + 2,\\,\\,\\,2{t^2} - t + 1,\\,\\,\\,t + 2,\\,\\,{t^2} + t + 4}"are linearly dependent and hence does not span polynomial of degree 2.
Comments
Leave a comment