1.9.given A "\\begin{bmatrix}\n 1 & 1& -1 \\\\\n 2 & 2 & 3 \\\\\n 4 & 0 &0 \\\\\n \n\\end{bmatrix}" B="\\begin{bmatrix}\n 1 & 1 & -1 \\\\\n 2 & 2 & 3 \\\\\n 4 & 0 & 0 \\\\\n\n\\end{bmatrix}"
1.9.1. find -A -1 +3BT
1.9.2. Find B-1+(AT+A-1)
Remind that for "3\\times3" matrix "T=\\left(\\begin{array}{lll}a_{11}&a_{12}&a_{13}\\\\a_{21}&a_{22}&a_{23}\\\\a_{31}&a_{32}&a_{33}\\end{array}\\right)" the inverse can be computed using the formula: "T^{-1}=\\frac{1}{|T|}Adj\\,\\,T", where "|T|" is the determinant of matrix "T". It has the form: "|T|=a_{11}a_{22}a_{33}+a_{21}a_{13}a_{32}+a_{31}a_{12}a_{23}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{31}a_{13}a_{22}" ; "Adj\\,\\,T=\\left(\\begin{array}{lll}A_{11}&A_{12}&A_{13}\\\\A_{21}&A_{22}&A_{23}\\\\A_{31}&A_{32}&A_{33}\\end{array}\\right)" and "A_{11}=\\left|\\begin{array}{lll}a_{22}&a_{23}\\\\a_{32}&a_{33}\\end{array}\\right|", "A_{12}=-\\left|\\begin{array}{lll}a_{12}&a_{13}\\\\a_{32}&a_{33}\\end{array}\\right|", "A_{13}=\\left|\\begin{array}{lll}a_{12}&a_{13}\\\\a_{22}&a_{23}\\end{array}\\right|", "A_{21}=-\\left|\\begin{array}{lll}a_{21}&a_{23}\\\\a_{31}&a_{33}\\end{array}\\right|", "A_{22}=\\left|\\begin{array}{lll}a_{11}&a_{13}\\\\a_{31}&a_{33}\\end{array}\\right|", "A_{23}=-\\left|\\begin{array}{lll}a_{11}&a_{13}\\\\a_{21}&a_{23}\\end{array}\\right|" , "A_{31}=\\left|\\begin{array}{lll}a_{21}&a_{22}\\\\a_{31}&a_{32}\\end{array}\\right|", "A_{32}=-\\left|\\begin{array}{lll}a_{11}&a_{12}\\\\a_{31}&a_{32}\\end{array}\\right|", "A_{33}=\\left|\\begin{array}{lll}a_{11}&a_{12}\\\\a_{21}&a_{22}\\end{array}\\right|."
For the given matrices we have:
a). "A^{-1}=\\left(\\begin{array}{lll}0&0&\\frac{1}{4}\\\\\\frac{3}{5}&\\frac{1}{5}&-\\frac{1}{4}\\\\-\\frac{2}{5}&\\frac{1}{5}&0\\end{array}\\right)"; "B^{\\top}=\\left(\\begin{array}{lll}1&2&4\\\\1&2&0\\\\-1&3&0\\end{array}\\right)";
"-A^{-1}+3B^{\\top}=\\left(\\begin{array}{lll}3&6&\\frac{47}{4}\\\\\\frac{12}{5}&\\frac{29}{5}&\\frac{1}{4}\\\\-\\frac{13}{5}&\\frac{44}{5}&0\\end{array}\\right)";
b). "B^{-1}=A^{-1}" . We receive:
"B^{-1}+(A^{\\top}+A^{-1})=2A^{-1}+A^{\\top}=\\left(\\begin{array}{lll}1&2&\\frac{9}{2}\\\\\\frac{11}{5}&\\frac{12}{5}&-\\frac{1}{2}\\\\-\\frac{9}{5}&\\frac{17}{5}&0\\end{array}\\right)".
Comments
Leave a comment