2x+5y+3z=2
x+2y+2z=4
x+y+4z=11. Use the elementary row reduction to solve for the linear system.
"\\begin{pmatrix}\n\n 2 & 5&3&|&2\\\\\n\n 1 & 2&2&|&4\\\\1&1&4&|&11\n\n\\end{pmatrix}"
"R_{1}\\leftrightarrow R_{3}\\begin{pmatrix}\n\n 1&1&4&|&11\\\\\n\n 1 & 2&2&|&4\\\\2 & 5&3&|&2\n\n\\end{pmatrix}"
"-R_{1}+R_{2}\\rightarrow R_{2}"
"-2R_{1}+R_{3}\\rightarrow R_{3}" "\\begin{pmatrix}\n 1&1&4&|&11\\\\\n 0 & 1&-2&|&-7\\\\0 & 3&-5&|&-20\n\\end{pmatrix}"
"-3R_{2}+R_{3}\\rightarrow R_{3}" "\\begin{pmatrix}\n 1&1&4&|&11\\\\\n 0 & 1&-2&|&-7\\\\0 & 0&1&|&1\n\\end{pmatrix}"
Hence, we have;
"x+y+4z=11"
"y-2z=-7"
"z=1"
"=> y=-7+2z=-7+2(1)=-5"
"=>x=11-4z-y=11-4(1)-(-5)=12"
"\u2234 x=12, y=-5, z=1"
Comments
Leave a comment