QUESTION 2 2.1. Find the change of basis matrix P∁←ℬ for the bases
ℬ = {(9, 2), (4, −3)} and ∁= {(2, 1), (−3, 1)} of ℝ2 .
2.2.Verify [v]∁ = P∁←ℬ[v]ℬ for v = (−5, 3).
2.1. Denote "a_1=(9,2),a_2=(4,-3)" and "b_1=(2,1),b_2=(-3,1)". Any vector "v" can be presented as: "v=\\alpha_1a_1+\\alpha_2a_2" or "v=\\beta_1b_1+\\beta_2b_2" with real "\\alpha_i,\\beta_j" . The aim is to find the matrix "T" such that: "\\left(\\begin{array}{ll}\\beta_1\\\\\\beta_2\\end{array}\\right)=T\\left(\\begin{array}{ll}\\alpha_1\\\\\\alpha_2\\end{array}\\right)". We may consider two vectors: "v_1=\\alpha^1_1a_1+\\alpha^1_2a_2,""v_1=\\beta^1_1b_1+\\beta^1_2b_2" and "v_2=\\alpha^2_1a_1+\\alpha^2_2a_2,v_2=\\beta^2_1b_1+\\beta^2_2b_2". Then consider equation: "\\left(\\begin{array}{ll}\\beta^1_1&\\beta^2_1\\\\\\beta^1_2&\\beta^2_2\\end{array}\\right)=T\\left(\\begin{array}{ll}\\alpha^1_1&\\alpha^2_1\\\\\\alpha^1_2&\\alpha^2_2\\end{array}\\right)" and receive: "\\left(\\begin{array}{ll}\\beta^1_1&\\beta^2_1\\\\\\beta^1_2&\\beta^2_2\\end{array}\\right)\\left(\\begin{array}{ll}\\alpha^1_1&\\alpha^2_1\\\\\\alpha^1_2&\\alpha^2_2\\end{array}\\right)^{-1}=T" . As an example we take: "v_1=a_1" and "v_2=a_2". Then, "\\left(\\begin{array}{ll}\\alpha^1_1&\\alpha^2_1\\\\\\alpha^1_2&\\alpha^2_2\\end{array}\\right)=\\left(\\begin{array}{ll}1&0\\\\0&1\\end{array}\\right)". "a_1=\\beta^1_1b_1+\\beta^1_2b_2, a_2=\\beta^2_1b_1+\\beta^2_2b_2" provide two systems of equations: "9=2\\beta_1^1-3\\beta_2^1", "2=\\beta_1^1+\\beta_2^1". We receive: "\\beta_1^1=3,\\beta_2^1=-1". Another system of equations is: "4=2\\beta_1^2-3\\beta_2^2", "-3=\\beta_1^2+\\beta_2^2" . We get: "\\beta_1^2=-1,\\beta_2^2=-2." Thus, matrix "T" has the form: "T=\\left(\\begin{array}{ll}3&-1\\\\-1&-2\\end{array}\\right)".
2.2. The aim is to find representations of vector "v" in basis "B" and basis "C". We have: "v=\\beta_1b_1+\\beta_2b_2". We receive equations: "2\\beta_1-3\\beta_2=-5,\\beta_1+\\beta_2=3." The solution is: "\\beta_1=\\frac45,\\beta_2=\\frac{11}{5}". From representation: "v=\\alpha_1a_1+\\alpha_2a_2" we get: "9\\alpha_1+4\\alpha_2=-5,2\\alpha_1-3\\alpha_2=3." We get: "\\alpha_1=-\\frac{3}{35},\\alpha_2=-\\frac{37}{35}". In order to check the transformation, multiply: "T\\left(\\begin{array}{ll}\\alpha_1\\\\\\alpha_2\\end{array}\\right)=\\left(\\begin{array}{ll}3&-1\\\\-1&-2\\end{array}\\right)\\left(\\begin{array}{ll}-\\frac{3}{35}\\\\-\\frac{37}{35}\\end{array}\\right)=\\left(\\begin{array}{ll}\\frac{4}{5}\\\\\\frac{11}{5}\\end{array}\\right)". Thus, the transformation is correct.
Comments
Leave a comment