Establish the initial feasible solutions of the LP model using NCR (North west Corner Rule), MCM ( Minimum Cost Method or Greedy Method), and VAM ( Vogel’s Approximation Method)
Minimize: C = 14X1A + 25X1B + 13X1C + 18 X1D.+ 10X2A + 12X2B + 13X2C + 11X2D+ 15X3A + 20X3B + 11X3C+ 25X3D
Subject to: X1A + X1B + X1C + X1D = 140 X1A + X2A + X3A = 100
X2A + X2B + X2C + X2D = 160 X1B + X2B + X3B = 100
X3A + X3B + X3C + X3D = 50 X1C + X2C + X3C = 50
X1D + X2D + X3D = 100 Xij
"\\text{The initial tableau for this problem is: }\\\\\\begin{matrix}\n & &&&140 \\\\\\hline\n &&&&160\\\\\\hline&&&&50\\\\\\hline100&100&50&100\n\\end{matrix}\n\\\\\\text{Using North-west corner method, we locate the upper-most variable$(X_{1A})$ in the }\\\\\\text{tableau and set it to the min(100,140) = 100 and we cancel out column 1}\n\\\\\\begin{matrix}\n 100& &&&40 \\\\\\hline\n &&&&160\\\\\\hline&&&&50\\\\\\hline X&100&50&100\n\\end{matrix}\n\\\\\\text{Repeating the process, we obtain the following tableaus}\n\\\\\\begin{matrix}\n 100& 40&&&X\\\\\\hline\n &&&&160\\\\\\hline&&&&50\\\\\\hline X&60&50&100\n\\end{matrix}\n\\\\\\begin{matrix}\n 100& 40&&&X\\\\\\hline\n &&&&100\\\\\\hline&&&&50\\\\\\hline X&X&50&100\n\\end{matrix}\n\\\\\n\n\\\\\\begin{matrix}\n 100& 40&&&X\\\\\\hline\n &60&50&&50\\\\\\hline&&&&50\\\\\\hline X&X&X&100\n\\end{matrix}\n\n\n\\\\\\begin{matrix}\n 100& 40&&&X\\\\\\hline\n &60&50&50&X\\\\\\hline&&&&50\\\\\\hline X&X&X&50\n\\end{matrix}\n\n\\\\\\begin{matrix}\n 100& 40&&&X\\\\\\hline\n &60&50&50&X\\\\\\hline&&&50&X\\\\\\hline X&X&X&X\n\\end{matrix}\n\\\\\\text{Therefore, the solution is feasible, the solution is $X_{1A}=100,X_{1B}=40,X_{2B}=60$,}\\\\\\text{$X_{2C}=50,X_{2D}=50,X_{3D}=50,C=5570$}\n\\\\\\text{We locate the smallest cost(10) at $X_{2A}$ in our initial matrix, we then set the value of $X_{2A}$}\\\\\\text{to the min(100,160). Next,we cross out column 1 and reduce $S_2$(160) to 160-100=60. We }\\\\\\text{repeat the process for the remaining uncrossed out rows and columns to obtain the final tableau}\\\\\n\\\\\\begin{matrix}\n & 100&&40&X\\\\\\hline\n 100 &&&60&X\\\\\\hline&0&50&&X\\\\\\hline X&X&X&X\n\\end{matrix}\n\\\\\\text{Therefore, the initial feasible solution is }\\\\X_{1B}=100,X_{1D}=40,X_{2A}=100,X_{2D}=60, X_{3B}=0,X_{3C}=50,z=5430\n\\\\\\text{Next, we use the Vogel's approximation method to find the basic feasible solution. We }\\\\\\text{compute the penalties by computing the difference between the smallest numbers in each}\\\\\\text{row, we select the row with the largest penalty, after which we select the variable with }\\\\\\text{the smallest value.}\\\\\\text{From the table below, column 3 has the largest penalty, we choose $X_{3C}$ since has the smallest}\\\\\\text{cost}\n\\\\\\begin{matrix}\n 14 & 25&13&18&140 &&&14-13=1 \\\\\\hline \n 10 &12&13&11&160&&&11-10=1\\\\\\hline15&20&11&25&50&&&15-11=4\\\\\\hline100&100&50&100&&&\n\\end{matrix}\n\\\\\\text{Repeating the process, we obtain the final tableau}\n\\\\\\begin{matrix}\n 100 &&&40&X\\\\\\hline\n &100&&60&X\\\\\\hline0&&50&&X\\\\\\hline X&X&X&X\n\\end{matrix}\n\\\\X_{1A}=100,X_{1D}=40,X_{2B}=100,X_{2D}=60, X_{3A}=0,X_{3C}=50,z=4530"
Comments
Leave a comment