"A=\\begin{bmatrix}\n 1 & -1&1 \\\\\n 2 & 0&3\\\\\n1&4&-1\n\\end{bmatrix}"
Begin with an initial nonzero approximation of
"x_0=\\begin{bmatrix}\n 1 \\\\\n 1\\\\\n1\n\\end{bmatrix}"
Then obtain the following approximations
Iteration
"x_1=Ax_0=\\begin{bmatrix}\n 1 & -1&1 \\\\\n 2 & 0&3\\\\\n1&4&-1\n\\end{bmatrix}\\begin{bmatrix}\n 1 \\\\\n 1\\\\\n1\n\\end{bmatrix}\n=\\begin{bmatrix}\n 1 \\\\\n 5\\\\\n4\n\\end{bmatrix}"
“Scaled” Approximation
"\\to1\\begin{bmatrix}\n 1 \\\\\n 5\\\\\n4\n\\end{bmatrix}"
Iteration
"x_2=Ax_1=\\begin{bmatrix}\n 1 & -1&1 \\\\\n 2 & 0&3\\\\\n1&4&-1\n\\end{bmatrix}\\begin{bmatrix}\n 1 \\\\\n 5\\\\\n4\n\\end{bmatrix}\n=\\begin{bmatrix}\n 0 \\\\\n 14\\\\\n17\n\\end{bmatrix}"
“Scaled” Approximation
"\\to14\\begin{bmatrix}\n 0 \\\\\n 1\\\\\n1.2\n\\end{bmatrix}"
Iteration
"x_3=Ax_2=\\begin{bmatrix}\n 1 & -1&1 \\\\\n 2 & 0&3\\\\\n1&4&-1\n\\end{bmatrix}\\begin{bmatrix}\n 0 \\\\\n 14\\\\\n17\n\\end{bmatrix}\n=\\begin{bmatrix}\n3 \\\\\n51\\\\\n39\n\\end{bmatrix}"
“Scaled” Approximation
"\\to3\\begin{bmatrix}\n 1 \\\\\n 17\\\\\n13\n\\end{bmatrix}"
Iteration
"x_4=Ax_3=\\begin{bmatrix}\n 1 & -1&1 \\\\\n 2 & 0&3\\\\\n1&4&-1\n\\end{bmatrix}\\begin{bmatrix}\n 3 \\\\\n 51\\\\\n39\n\\end{bmatrix}\n=\\begin{bmatrix}\n-9 \\\\\n123\\\\\n168\n\\end{bmatrix}"
“Scaled” Approximation
"\\to-9\\begin{bmatrix}\n 1 \\\\\n -13.7\\\\\n-18.7\n\\end{bmatrix}"
Note that the approximations appear to be approaching scalar multiples of
"\\begin{bmatrix}\n 1 \\\\\n -14\\\\\n-19\n\\end{bmatrix}"
With "x=(1,-13.7,-18.7)" as the approximation of a dominant eigenvector of "A" , use the Rayleigh quotient to obtain an approximation of the dominant eigenvalue of "A" . First compute the product "Ax"
"Ax=\\begin{bmatrix}\n 1 & -1&1 \\\\\n 2 & 0&3\\\\\n1&4&-1\n\\end{bmatrix}\\begin{bmatrix}\n 1 \\\\\n -13.7\\\\\n-18.7\n\\end{bmatrix}\n=\\begin{bmatrix}\n-4 \\\\\n-54.1\\\\\n-35.1\n\\end{bmatrix}"
Then, because
"Ax\\cdot x=-4\\cdot 1+(-54.1)(-13.7)+(-35.1)(-18.7)=1393.54\\\\\nx\\cdot x=1\\cdot1+(-13.7)(-13.7)+(-18.7)(-18.7)=538.38"
you can compute the Rayleigh quotient to be
"\\lambda=\\frac{Ax\\cdot x}{x\\cdot x}=\\frac{1393.54}{538.38}=2.6"
which is a good approximation of the dominant eigenvalue
"\\lambda=3"
Answer "\\begin{bmatrix}\n 1 \\\\\n -14\\\\\n-19\n\\end{bmatrix}, \\lambda=3"
Comments
Leave a comment