The LU decomposition "A=LU" of the given matrix is:
"A=\\begin{bmatrix}\n 1 & -1&4 \\\\\n 2 &9&8\\\\\n6&5&2\n\\end{bmatrix}=\n\\begin{bmatrix}\n 1 & 0&0 \\\\\n 2 & 1&0\\\\\n6&a&1\n\\end{bmatrix}\\begin{bmatrix}\n 1 & -1&4 \\\\\n 0 & b&0\\\\\n0&0&c\n\\end{bmatrix}"
-2+b=9 -6+11a=5 24+c=2
b=11 a=1 c=-22
"A=\n\\begin{bmatrix}\n 1 & 0&0 \\\\\n 2 & 1&0\\\\\n6&1&1\n\\end{bmatrix}\\begin{bmatrix}\n 1 & -1&4 \\\\\n 0 & 11&0\\\\\n0&0&-22\n\\end{bmatrix}=LU"
Hence, the inverse of the matrix is "A^{-1}=U^{-1}L^{-1}"
Since U and L are already in upper and lower triangular form, it is easy to find their inverses using Gauss-Jordan elimination.
Inverse of L
"\\begin{bmatrix}\n 1 & 0&0 |1&0&0\\\\\n 2 &1&0|0&1&0\\\\\n6&1&1|0&0&1\n\\end{bmatrix}"
IIr+Ir(-2)
IIIr+Ir(-6)
"\\begin{bmatrix}\n 1 &0&0|\\quad1&0&0\\\\\n 0 &1&0|-2&1&0\\\\\n0&1&1|-6&0&1\n\\end{bmatrix}"
IIIr+IIr(-1)
"\\begin{bmatrix}\n 1 &0&0 |1&0&0\\\\\n 0 &1&\\quad0 |-2&1&0\\\\\n0&0&\\quad1|-4&-1&1\n\\end{bmatrix}"
Inverse of U:
"\\begin{bmatrix}\n 1 & -1&\\quad4 |1&0&0\\\\\n 0 &11&\\quad0 |0&1&0\\\\\n0&1&-22|0&0&1\n\\end{bmatrix}"
IIr"\\cdot(\\frac{1}{11})"
"\\begin{bmatrix}\n 1 & -1&\\quad4 |1&0&0\\\\\n 0 &1&\\quad0 |0&\\frac{1}{11}&0\\\\\n0&1&-22|0&0&1\n\\end{bmatrix}"
IIIr+IIr(-1)
"\\begin{bmatrix}\n 1 & -1&\\quad4 |\\frac{1}{11}&-\\frac{1}{11}&\\frac{2}{11}\\\\\n 0 &1&\\quad0 |0&\\frac{1}{11}&0\\\\\n0&0&-22|0&-\\frac{1}{11}&1\n\\end{bmatrix}"
IIIr"\\cdot(-\\frac{1}{22})"
Ir+IIr+IIIr(-4)
"\\begin{bmatrix}\n 1 & 0&\\quad0 |1&\\frac{1}{11}&\\frac{2}{11}\\\\\n 0 &1&\\quad0 |0&\\frac{1}{11}&0\\\\\n0&0&1|0&0&-\\frac{1}{22}\n\\end{bmatrix}"
Hence,
"A^{-1}=U^{-1}L^{-1}=\\\\=\\begin{bmatrix}\n1&\\frac{1}{11}&\\frac{2}{11}\\\\\n 0&\\frac{1}{11}&0\\\\\n0&0&-\\frac{1}{22}\n\\end{bmatrix}\n\\begin{bmatrix}\n 1&0&0\\\\\n -2&1&0\\\\\n-4&-1&1\n\\end{bmatrix}=\\\\\n=\n\\begin{bmatrix}\n \\frac{1}{11}&-\\frac{1}{11}&\\frac{2}{11}\\\\\n-\\frac{2}{11}&\\frac{1}{11}&0\\\\\n\\frac{2}{11}&\\frac{1}{22}&-\\frac{1}{22}\n\\end{bmatrix}"
Comments
Leave a comment