"\u222b_0^6\\sqrt{(x+2)}"
We divide the segment [0;6] into 6 parts and at each node we calculate the value of the integrand
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c:c:c:}\n n & 0 & 1&2&3&4&5&6\\\\ \\hline\n x_n & 0 & 1&2&3&4&5&6\\\\\n \\hdashline\n \\approx\\sqrt{x+2} &1.41&1.73&2&2.24&2.45&2.65&2.83\n\\end{array}"
The formula for calculating the integral by the trapezoid method
"\u222b_a^bf(x)dx\\approx{h}[\\frac{f(x_0)+f(x_n)}{2}+f(x_{1})+...+f(x_{n-1})]\\ where \\ h =\\frac{(b-a)}{n}"
"h=\\frac{6-0}{6}=1"
"\u222b_0^6\\sqrt{(x+2)}\\approx\\frac{1.41+2.83}{2}+1.73+2.0+2.24+2.45+2.65 =13.19"
Answer: "\u222b_0^6\\sqrt{(x+2)}\\approx13.19"
Comments
Dear sandeep, please clarify your comment. It is not full, it is not clear.
Evaluate
Leave a comment