"x^6-x^4-x^3-1=x^4(x^2-1)-(x^3+1)="
"=x^4(x-1)(x+1)-(x+1)(x^2-x+1)="
"=(x-1)(x^5+x^4-x^2+x-1)" "x1=1"
Given "f(x)=x^6-x^4-x^3-1"
Find points "a" and "b" such that "a<b" and "f(a)f(b)<0"
Let "a=1, b=1.5"
"f(a)=f(1)=1^6-1^4-1^3-1=-2"
"f(b)=f(1.5)=1.5^6-1.5^4-1.5^3-1=1.953125"
"f(a)f(b)=f(1)f(1.5)<0" Using iterative Regula-Falsi Formula, the first approximation,
"x_1=a-\\dfrac{b-a}{f(b)-f(a)}f(a)=""=1-\\dfrac{1.5-1}{1.953125+2}(-2)\\approx1.252964"
"f(1.252964)=-1.562404"
"x_2=1.252964-\\dfrac{1.5-1.252964}{1.953125+1.562404}(-1.562404)\\approx""\\approx1.362754"
"f(1.362754)=-0.574795"
"x_3=1.362754-\\dfrac{1.5-1.362754}{1.953125+0.574795}(-0.574795)\\approx""\\approx1.393961"
"f(1.393961)=-0.147639"
"x_4=1.393961-\\dfrac{1.5-1.393961}{1.953125+0.147639}(-0.147639)\\approx""\\approx1.401413"
"f(1.401413)=-0.034199"
"x_5=1.401413-\\dfrac{1.5-1.401413}{1.953125+0.034199}(-0.034199)\\approx""\\approx1.403110"
"f(1.403110)=-0.007729"
"x_6=1.403110-\\dfrac{1.5-1.403110}{1.953125+0.007729}(-0.007729)\\approx""\\approx1.403492"
"f(1.403492)=-0.000390"
"x_7=1.403492-\\dfrac{1.5-1.403492}{1.953125+0.000390}(-0.000390)\\approx""\\approx1.403597"
"f(1.403597)=-0.000087"
"x_8=1.403597-\\dfrac{1.5-1.403597}{1.953125+0.000087}(-0.000087)\\approx""\\approx1.403601"
"f(1.403601)=-0.000020"
"x_8=1.403601-\\dfrac{1.5-1.403601}{1.953125+0.000020}(-0.000020)\\approx""\\approx1.403602"
"f(1.403602)=-0.000002"
If "\\varepsilon=0.0001," then "|f(x)|<0.0001"
Root of "f(x)" is "x=1.403602"
Comments
Leave a comment