"f'(x)=e^x+1"
"x_{n+1}=x_n-\\dfrac{f(x_n)}{f'(x_n)}"
Initial solution "x_0 =1"
"\\begin{matrix}\n n & x_n & f(x_n) & x_{n+1} \\\\\n 0 & 1 & -0.281718 & 1.075766\\\\\n 1 & 1.075766 & 0.008003 & 1.073729 \\\\\n 2 & 1.073729 & 0.000006 & 1.073729 \\\\\n \n\\end{matrix}"
"\\varepsilon =\\big|\\dfrac{1.075766-1}{1}\\big|\\cdot 100\\%=7.5766\\%"
"\\varepsilon =\\big|\\dfrac{1.073729-1.075766}{1.075766}\\big|\\cdot 100\\%=0.1894\\%"
"\\varepsilon =\\big|\\dfrac{1.073729-1.073729}{1.073729}\\big|\\cdot 100\\%=0.000000\\%"
"x=1.073729"
The root is "1.073729"
Comments
Leave a comment