"f'(x)=4x^3-15x^2+40x-40"
"x_{n+1}=x_n-\\dfrac{f(x_n)}{f'(x_n)}"
Initial solution "x_0 =2+2i"
"n=0, x_0=2+2i,"
"f(x_0)=-4,"
"x_1=1.91666667+1,91666667i"
"n=1, x_1=1.91666667+1.91666667i,"
"f(x_1)=-0.23746142-0.13310185i"
"x_2=1.91486064+1.90780412i"
"n=2,x_2=1.91486064+1.90780412i"
"f(x_2)=0.00016433-0.00142961i"
"x_3=1.91490059+1.90777750i"
"n=3,x_3=1.91490059+1.90777750i"
"f(x_3)=0.00000002+0.00000003i"
"x_4=1.91490059+1.90777750i"
"\\varepsilon =|-4|\\cdot 100\\%=400\\%"
"\\varepsilon =|-0.23746142-0.13310185i|\\cdot 100\\%=""=27.22205511\\%"
"\\varepsilon =|0.00016433-0.00142961i|\\cdot 100\\%=""=0.1439023662\\%"
"\\varepsilon =|0.00000002+0.00000003i|\\cdot 100\\%=""=0.000003\\%"
The root is "1.91490059+1.90777750i"
Comments
Leave a comment