Let "f(x)=2x^4+6x^2+8"
Use initial guesses "x_0=-1, x_1=0, x_2=1"
"f(x_0)=f(-1)=16"
"f(x_1)=f(0)=8"
"f(x_2)=f(1)=16"
"h_0=x_1-x_0=0-(-1)=1"
"h_1=x_2-x_1=1-0=1"
"\\delta_0=\\dfrac{f(x_1)-f(x_0)}{h_0}=\\dfrac{8-16}{1}=-8"
"\\delta_1=\\dfrac{f(x_2)-f(x_1)}{h_1}=\\dfrac{16-8}{1}=8"
"a=\\dfrac{\\delta_1-\\delta_0}{h_1+h_0}=\\dfrac{8-(-8)}{1+1}=8"
"b=a\\times h_1+\\delta_1=8\\times1+8=16"
"c=f(x_2)=f(1)=16"
"x_3=x_2+\\dfrac{-2c}{b\\pm\\sqrt{b^2-4ac}}""x_3=1+\\dfrac{-2(16)}{16+\\sqrt{16^2-4(8)(16)}}=i"
"x_0=-1, x_1=0, x_2=i"
Calling the function Muller with different parameters yields two complex roots of the equation "x_1\\approx 0.5+1.32288i, x_3\\approx-0.5+1.32288i."
Two other roots can be determined as their conjugate pairs "x_2\\approx0.5-1.32288i," Â "x_4\\approx-0.5-1.32288i."
"x_2\\approx 0.5-1.32288i"
"x_4\\approx -0.5-1.32288i"
Comments
Leave a comment