If y(1) = – 3, y(3) = 9, y(4) = 30, and y(6) = 132, find the four-point
Lagrange interpolation polynomial that takes the same values as the function y at the given points.
The interpolating polynomial is:
"L(x)=\\dfrac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}\\times y_0""+\\dfrac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}\\times y_1"
"+\\dfrac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}\\times y_2"
"+\\dfrac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}\\times y_3"
"+\\dfrac{(x-1)(x-4)(x-6)}{(3-1)(3-4)(3-6)}\\times 9"
"+\\dfrac{(x-1)(x-3)(x-6)}{(4-1)(4-3)(4-6)}\\times30"
"+\\dfrac{(x-1)(x-3)(x-4)}{(6-1)(6-3)(6-4)}\\times 132"
"=x^3-3x^2+5x-6"
"L(x)=x^3-3x^2+5x-6"
Comments
Leave a comment