Use simpson's method to approximate
8
∫ (x^2-x+3)dx with 8 sub-interval
Approximate the integral
with "n=8" using the Simpson's rule.
"+2f(x_{n-2})+4f(x_{n-1}+f(x_n))"
where "\\Delta x=\\dfrac{b-a}{n}"
We have that "a=0, b=8, n=8." Therefore "\\Delta x=\\dfrac{8-0}{8}=1."
Divide the interval"[0, 8]"into "n=8" subintervals of the length "\\Delta x=1" with the following endpoints: "a=0, 1, 2, 3, 4, 5, 6, 7, 8=b."
Now, just evaluate the function at these endpoints.
"4f(x_1)=4f(1)=12"
"2f(x_2)=2f(2)=10"
"4f(x_3)=4f(3)=36"
"2f(x_4)=2f(4)=30"
"4f(x_5)=4f(5)=92"
"2f(x_6)=2f(6)=66"
"4f(x_7)=4f(7)=180"
"f(x_8)=f(8)=59"
"=\\dfrac{488}{3}\\approx162.6667"
"\\displaystyle\\int_{0}^{8}(x^2-x+3)dx\\approx\\dfrac{488}{3}\\approx162.6667"
Comments
Leave a comment