Use the midpoint approximation method to find the area under the curve 𝑓(𝑥)=1−𝑥2 over
the interval [−1,1].
The midpoint rule (also known as the midpoint approximation) uses the midpoints of a subinterval:
"\\begin{aligned}\n\n&\\int_{a}^{b} f(x) d x \\\\\n\n&\\approx \\Delta x\\left(f\\left(\\frac{x_{0}+x_{1}}{2}\\right)+f\\left(\\frac{x_{1}+x_{2}}{2}\\right)+f\\left(\\frac{x_{2}+x_{3}}{2}\\right)+\\cdots+f\\left(\\frac{x_{n-2}+x_{n-1}}{2}\\right)\\right. \\\\\n\n&\\left.+f\\left(\\frac{x_{n-1}+x_{n}}{2}\\right)\\right) \\\\\n\n\\end{aligned}"
where "\\Delta x=\\frac{b-a}{n}"
We have that "f(x)=1-x^{2}, a=-1, b=1 ," and "n=4"
Therefore, "\\Delta x=\\frac{1-(-1)}{4}=\\frac{1}{2}"
Divide the interval "[-1,1]" into "n=4" subintervals of the length "\\Delta x=\\frac{1}{2}" with the following endpoints: "a=-1,-\\frac{1}{2}, 0, \\frac{1}{2}, 1=b"
Now, just evaluate the function at the midpoints of the subintervals.
"\\begin{aligned}\n\n&f\\left(\\frac{x_{0}+x_{1}}{2}\\right)=f\\left(\\frac{-1-\\frac{1}{2}}{2}\\right)=f\\left(-\\frac{3}{4}\\right)=\\frac{7}{16}=0.4375 \\\\\n\n&f\\left(\\frac{x_{1}+x_{2}}{2}\\right)=f\\left(\\frac{-\\frac{1}{2}+0}{2}\\right)=f\\left(-\\frac{1}{4}\\right)=\\frac{15}{16}=0.9375 \\\\\n\n&f\\left(\\frac{x_{2}+x_{3}}{2}\\right)=f\\left(\\frac{0+\\frac{1}{2}}{2}\\right)=f\\left(\\frac{1}{4}\\right)=\\frac{15}{16}=0.9375 \\\\\n\n&f\\left(\\frac{x_{3}+x_{4}}{2}\\right)=f\\left(\\frac{\\frac{1}{2}+1}{2}\\right)=f\\left(\\frac{3}{4}\\right)=\\frac{7}{16}=0.4375\n\n\\end{aligned}"
Finally, just sum up the above values and multiply by "\\Delta x=\\frac{1}{2} :"
"\\frac{1}{2}(0.4375+0.9375+0.9375+0.4375)=1.375"
Comments
Leave a comment