Apply Runge-Kutta method of 4th order method to find the approximate
value of 𝑦 for 𝑥 = 0.1, if 𝑑𝑦
𝑑𝑥
= 𝑥 + 𝑦
2 given that 𝑦 = 1 where 𝑥 = 0.
"\\text { Let } f(x, y) : d y \/ d x=x+y^{2}"
Part I: "h=0.1 x_{0}=0\\ and\\ y+0=1"
By Runge kutta method of 4th order.
"K_{1}=h f\\left(x_{0}, y_{0}\\right)=0.1 \\times f(0,1) \n\n\\\\=0.1 \\times\\left(0+1^{2}\\right)=0.1 \n\n\\\\K_{2}=h f\\left(x_{0}+\\frac{h}{2}, y_{0}+\\frac{k_{1}}{2}\n\n\\\\=0.1 f\\left(0+\\frac{0.1}{2}, \\frac{1+0.1}{2}\\right)\\right. 0.1 \\times\\left(\\frac{0.1}{2}+\\left(\\frac{2.1}{2}\\right)^{2}\\right) \n\n\\\\=0.1 \\times\\left(0.05+(1.05)^{2}\\right) \n\n\\\\=0.1153"
"K_{3}=h f\\left(x_{0}+\\frac{h}{2}, y_{0}+\\frac{k_{2}}{2}\\right)\n\n\\\\=0.1 \\times f\\left(0+\\frac{0.1}{2}, 1+\\frac{0.1153}{2}\\right) \n\n\\\\=0.1 \\times\\left[\\frac{0.1}{2}+\\left(\\frac{2.1153}{2}\\right)^{2}\\right] \n\n\\\\=0.1169 K_{4}=h f\\left(x_{0}+h, y_{0}+k_{3}\\right)\n\n\\\\=0.1 \\times f(0+0.1,1+0.1169) \n\n\\\\=0.1\\left[0.1+(1.1169)^{2}\\right] =0.1347"
"\\therefore K=\\frac{1}{6}\\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\\right) \n\n\\\\ =\\frac{1}{6}(0.1+0.1153 \\times 2+0.1169 \\times 2+0.1347) \n\n\\\\=0.1165"
"\\therefore y=y_{0}+k=1+0.1165=1.1165"
"\\therefore" The correct value of y when x=0.1 is 1.1165
Part 2:
"\\begin{aligned}\n\n&h=0.1, x=0.1 \\& y_{1}=1.1165 \\\\\n\n&k_{1}=h f\\left(x_{1}, y_{1}\\right)=0.1 f(0.1,1.1105) \\\\\n\n&=0.1\\left[0.1+(1.1165)^{2}\\right] \\\\\n\n&=0.1347 \\\\\n\n&K_{2}=h f\\left(x_{1}+\\frac{h}{2}, y_{1}+\\frac{k_{1}}{2}\\right) \\\\\n\n&=0.1 \\times f\\left(0.1+\\frac{0.1}{2}, 1.1165+\\frac{0.1347}{2}\\right) \\\\\n\n&=0.1\\left[0.15+(1.1838)^{2}\\right] \\\\\n\n&0.1551 \\\\\n\n&K_{3}=h f\\left(x_{1}+\\frac{h}{2}, y_{1}+\\frac{k_{2}}{2}\\right) \\\\\n\n&=0.1 \\times f\\left(0.1+\\frac{0.1}{2}, 1.1165+\\frac{0.1551}{2}\\right) \\\\\n\n&=0.1 \\times\\left[0.15+(1.1941)^{2}\\right] \\\\\n\n&=0.1576 \\\\\n\n&K_{4}=h f\\left(x_{1}+h_{1}, y_{1}+k_{3}\\right) \\\\\n\n&=0.1 f(0.1+0.1,1.1165+0.1576) \\\\\n\n&=0.1\\left[0.2+(1.2741)^{2}\\right] \\\\\n\n&=0.1823\n\n\\end{aligned}"
"\\begin{aligned}\n\n&K=\\frac{1}{6}\\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\\right) \\\\\n\n&=\\frac{1}{6}(0.1347+2 \\times 0.1551+2 \\times 0.1576+0.1823) \\\\\n\n&=0.1751 \\\\\n\n&\\therefore y=y_{1}+k=1.1165+0.1571 \\\\\n\n&=1.2736\n\n\\end{aligned}"
"K=\\frac{1}{6}\\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\\right) \n\n\\\\=\\frac{1}{6}(0.1347+2 \\times 0.1551+2 \\times 0.1576+0.1 \n\n\\\\=0.1751"
"\\therefore y=y_{1}+k=1.1165+0.1571 =1.2736"
"\\therefore" The correct value of y when x=0.2 is 1.2736
Comments
Leave a comment