"\\lim\\limits_{n\\to\\infty}x_n=0\\Leftrightarrow\\forall\\varepsilon>0\\ \\exists N\\ \\forall n>N\\ |x_n-0|<\\varepsilon"
"\\lim\\limits_{n\\to\\infty}|x_n|=0\\Leftrightarrow\\forall\\varepsilon>0\\ \\exists N\\ \\forall n>N\\ ||x_n|-0|<\\varepsilon"
Since "|x_n-0|=||x_n|-0|", we obtain that "\\lim\\limits_{n\\to\\infty}x_n=0\\Leftrightarrow\\lim\\limits_{n\\to\\infty}|x_n|=0"
Example of a divergent sequence "x_n" such that "|x_n|" is a convergent sequence: "x_n=(-1)^n"
Comments
Leave a comment