We have to prove that given any "\u03b5>0" we can find a "\u03b4_\u03b5>0" such that
"|\nf\n(\nx\n)\n\u2212\n1\n|\n<\n\u03b5\n \\quad \\forall\nx\n\u2208\n(\n2\n\u2212\n\u03b4_\n\u03b5\n,\n2\n+\n\u03b4_\n\u03b5\n)"
Let's evaluate the difference
"|\nf\n(\nx\n)\n\u2212\n1\n|\n=\n|\n3\nx\n\u2212\n5\n\u2212\n1\n|\n=\n|\n3\nx\n\u2212\n6\n|\n=\n3\n|\nx\n\u2212\n2\n|"
Therefore
"|\nf\n(\nx\n)\n\u2212\n1\n|\n<\n\u03b5\n\u21d4\n|\nx\n\u2212\n2\n|\n<\n\\frac{\u03b5}{3}"
Given, that "\u03b5>0" we can choose "\u03b4_\u03b5<\\frac{\u03b5}{3}"
Hence
"x\n\u2208\n(\n2\n\u2212\n\u03b4_\n\u03b5\n,\n2\n+\n\u03b4_\n\u03b5\n)\n\u21d2\n|\nx\n\u2212\n2\n|\n<\n\\frac{\u03b5}{3}\n\u21d4\n|\nf\n(\nx\n)\n\u2212\n1\n|\n<\n\u03b5"
Comments
Leave a comment